Abstract
Using solutions of the discrete Bethe ansatz equations, we study in detail the quantum impurity problem of a spin-down fermion immersed into a fully ploarized spin-up Fermi sea with weak attraction. We prove that this impurity fermion in the one-dimensional (1D) fermionic medium behaves like a polaron for weak attraction. However, as the attraction grows, the spin-down fermion binds with one spin-up fermion from the fully-polarized medium to form a tightly bound molecule. Thus it is seen that the system undergos a crossover from a mean field polaron-like nature into a mixture of excess fermions and a bosonic molecule as the attraction changes from weak attraction into strong attraction. This polaron-molecule crossover is universal in 1D many-body systems of interacting fermions. In a thermodynamic limit, we further study the relationship between the Fredholm equations for the 1D spin-1/2 Fermi gas with weakly repulsive and attractive delta-function interactions.
Original language | English |
---|---|
Pages (from-to) | 8-15 |
Number of pages | 8 |
Journal | Frontiers of Physics |
Volume | 7 |
Issue number | 1 |
DOIs | |
Publication status | Published - Feb 2012 |