TY - JOUR
T1 - Polyazolyl chelate chemistry. 7.1 Reactivity of the complexes [MCl(PPh3)2{HB(pz)3}] (M = Ru, Os; pz = pyrazol-1-yl)
AU - Buriez, Beatrice
AU - Burns, Ian D.
AU - Hill, Anthony F.
AU - White, Andrew J.P.
AU - Williams, David J.
AU - Wilton-Ely, James D.E.T.
PY - 1999/4
Y1 - 1999/4
N2 - The substitution chemistry of the complex [RuCl(PPh3)2{HB(pz)3}] (1) is reported. Treating 1 with the phosphines bis(diphenylphosphino)methane (dppm), 1,2-bis(diphenylphosphino)-ethane (dppe), or 1,1′-bis(diphenylphosphino)ferrocene (dppf) provides the complexes [RuCl-(dppm){HB(pz)3}] (2), [RuCl(dppe){HB(pz)3}] (3), or [RuCl(dppf){HB(pz)3}] (4), respectively. Reactions of 1 with pivaloisonitrile (CNCMe3) are solvent dependent: In neat dichloromethane or tetrahydrofuran the reaction of 1 with CNCMe3 provides the neutral complex [Ru(CNCMe3)Cl(PPh3)(HB(pz)3}] (5), while the salt [Ru(CNCMe3)(PPh3)2{HB(pz)3}]PF 6 (6· PF6) is obtained when the reaction is carried out in dichloromethane/methanol mixtures in the presence of NH4PF6. The reaction of 4 with CNCMe3 and NH4PF6 provides the salt [Ru-(CNCMe3)(dppf){HB(pz)3}]PF 6(7·PF6). The bis(isonitrile) salt [Ru(CNCMe3)2(PPh3){HB(pz)3}]-PF 6 (8·PF6) results from the reaction of 1, 5, or 6·PF6 with excess CNCMe3 in thf/methanol. The reaction of 1 with Na[S2CNMe2] provides the complex [Ru(S2CNMe2)(PPh3){HB(pz)3}] (9); however similar reaction of 1 or [Ru(NCMe)2(PPh3){HB(pz)3)]PF6 with Na[O2CH] failed to cleanly provide [Ru(O2CH)(PPh3){HB(pz)3}] (10), although this could be characterized spectroscopically. Rather, the ultimate product of these reactions was the hydrido complex [RuH(PPh3)2{HB(pz)3)] (11), which could also be obtained in high yield from the reaction of 1 with NaOMe. In a similar manner, reaction of 4 with methanolic NaOMe provided [RuH-(dppf){HB(pz)3}] (12). The reactions of 1 and 4 with alkynes are solvent dependent: Treating 1 with HC≡CR (R = C6H4Me-4, CPh2OH) in thf provides, respectively, the vinylidene complex [RuCl(=C=CHC6H4Me-4)(PPh3){HB(pz)3}] (13) and the allenylidene complex [RuCl(=C= C=CPh2)(PPh3){HB(pz)3}] (14), while the reaction of 1 with HC≡CC6H4Me-4 in a mixture of thf and methanol provides the alkynyl complex [Ru(C≡CC6H4Me-4)(PPh3) 2{HB(pz)3}] (15). The reaction of 1 with HC≡CCPh2OH in the presence of AgPF6 provides the allenylidene salt [Ru(=C=C=CPh2)(PPh3)2{HB(pz) 3}]PF6 (16·PF6), and similar treatment of 4 provides [Ru(=C=C=CPh2)(dppf){HB(pz)3}]PF6 (17·PF6). The reaction of 4 with HC≡CC6H4Me-4 and AgPF6 provides the vinylidene salt [Ru(=C=CHC6H4Me-4)(dppf){HB(pz)3}]PF 6 (18·PF6), deprotonation of which (NaOMe) provides [Ru(C≡CC6H4Me-4)(dppf){HB(pz)3}] (19). The allenylidene salt (16·PF6) with NaOMe provides the γ-alkoxyalkynyl complex [Ru(C≡CCPh2-OMe)(PPh3)2{HB(pz) 3}] (20). The complex [OsCl(PPh3)2{HB(pz)3}] (21) is obtained from the reaction of [OsCl2(PPh3)3] with K[HB(pz)3] and is converted by KOH in reluxing 2-methoxyethanol to the hydride complex [OsH(PPh3)2{HB(pz)3}] (22). The vinylidene complex 13 reacts with [Et2NH2][S2CNEt2] to provide the metallacyclic vinyl complex [Ru{C(=CHC6H4-Me-4)SC(NEt2)S}(PPh 3){HB(pz)3}] (23). Similarly the complex 14 and the salt 16·PF6 react with Na[S2CNMe2] to both provide the metallacyclic allenyl complex [Ru{C(=C=CPh2)SC-(NMe2)S}(PPh3){HB(Pz) 3}] (24). These reactions represent the first examples of the coupling of dithiocarbamates with vinylidene and allenylidene ligands. The complexes 5 and [RuCl-(CS)(PPh3){HB(Pz)3}] (25) and the salt (16·PF6) were characterized crystallographically.
AB - The substitution chemistry of the complex [RuCl(PPh3)2{HB(pz)3}] (1) is reported. Treating 1 with the phosphines bis(diphenylphosphino)methane (dppm), 1,2-bis(diphenylphosphino)-ethane (dppe), or 1,1′-bis(diphenylphosphino)ferrocene (dppf) provides the complexes [RuCl-(dppm){HB(pz)3}] (2), [RuCl(dppe){HB(pz)3}] (3), or [RuCl(dppf){HB(pz)3}] (4), respectively. Reactions of 1 with pivaloisonitrile (CNCMe3) are solvent dependent: In neat dichloromethane or tetrahydrofuran the reaction of 1 with CNCMe3 provides the neutral complex [Ru(CNCMe3)Cl(PPh3)(HB(pz)3}] (5), while the salt [Ru(CNCMe3)(PPh3)2{HB(pz)3}]PF 6 (6· PF6) is obtained when the reaction is carried out in dichloromethane/methanol mixtures in the presence of NH4PF6. The reaction of 4 with CNCMe3 and NH4PF6 provides the salt [Ru-(CNCMe3)(dppf){HB(pz)3}]PF 6(7·PF6). The bis(isonitrile) salt [Ru(CNCMe3)2(PPh3){HB(pz)3}]-PF 6 (8·PF6) results from the reaction of 1, 5, or 6·PF6 with excess CNCMe3 in thf/methanol. The reaction of 1 with Na[S2CNMe2] provides the complex [Ru(S2CNMe2)(PPh3){HB(pz)3}] (9); however similar reaction of 1 or [Ru(NCMe)2(PPh3){HB(pz)3)]PF6 with Na[O2CH] failed to cleanly provide [Ru(O2CH)(PPh3){HB(pz)3}] (10), although this could be characterized spectroscopically. Rather, the ultimate product of these reactions was the hydrido complex [RuH(PPh3)2{HB(pz)3)] (11), which could also be obtained in high yield from the reaction of 1 with NaOMe. In a similar manner, reaction of 4 with methanolic NaOMe provided [RuH-(dppf){HB(pz)3}] (12). The reactions of 1 and 4 with alkynes are solvent dependent: Treating 1 with HC≡CR (R = C6H4Me-4, CPh2OH) in thf provides, respectively, the vinylidene complex [RuCl(=C=CHC6H4Me-4)(PPh3){HB(pz)3}] (13) and the allenylidene complex [RuCl(=C= C=CPh2)(PPh3){HB(pz)3}] (14), while the reaction of 1 with HC≡CC6H4Me-4 in a mixture of thf and methanol provides the alkynyl complex [Ru(C≡CC6H4Me-4)(PPh3) 2{HB(pz)3}] (15). The reaction of 1 with HC≡CCPh2OH in the presence of AgPF6 provides the allenylidene salt [Ru(=C=C=CPh2)(PPh3)2{HB(pz) 3}]PF6 (16·PF6), and similar treatment of 4 provides [Ru(=C=C=CPh2)(dppf){HB(pz)3}]PF6 (17·PF6). The reaction of 4 with HC≡CC6H4Me-4 and AgPF6 provides the vinylidene salt [Ru(=C=CHC6H4Me-4)(dppf){HB(pz)3}]PF 6 (18·PF6), deprotonation of which (NaOMe) provides [Ru(C≡CC6H4Me-4)(dppf){HB(pz)3}] (19). The allenylidene salt (16·PF6) with NaOMe provides the γ-alkoxyalkynyl complex [Ru(C≡CCPh2-OMe)(PPh3)2{HB(pz) 3}] (20). The complex [OsCl(PPh3)2{HB(pz)3}] (21) is obtained from the reaction of [OsCl2(PPh3)3] with K[HB(pz)3] and is converted by KOH in reluxing 2-methoxyethanol to the hydride complex [OsH(PPh3)2{HB(pz)3}] (22). The vinylidene complex 13 reacts with [Et2NH2][S2CNEt2] to provide the metallacyclic vinyl complex [Ru{C(=CHC6H4-Me-4)SC(NEt2)S}(PPh 3){HB(pz)3}] (23). Similarly the complex 14 and the salt 16·PF6 react with Na[S2CNMe2] to both provide the metallacyclic allenyl complex [Ru{C(=C=CPh2)SC-(NMe2)S}(PPh3){HB(Pz) 3}] (24). These reactions represent the first examples of the coupling of dithiocarbamates with vinylidene and allenylidene ligands. The complexes 5 and [RuCl-(CS)(PPh3){HB(Pz)3}] (25) and the salt (16·PF6) were characterized crystallographically.
KW - Ray crystal-structure
KW - Allenylidene-ruthenium complexes
KW - Cyclopentadienyl-osmium chemistry
KW - Coordination chemistry
KW - Dihydrogen complexes
KW - Vinylidene complexes
KW - Molecular-structure
KW - Metal-complexes
KW - Ligands
KW - Hydrotris(pyrazolyl)borate
UR - http://www.scopus.com/inward/record.url?scp=0000534363&partnerID=8YFLogxK
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=anu_research_portal_plus2&SrcAuth=WosAPI&KeyUT=WOS:000079947500021&DestLinkType=FullRecord&DestApp=WOS_CPL
U2 - 10.1021/om980937x
DO - 10.1021/om980937x
M3 - Article
SN - 0276-7333
VL - 18
SP - 1504
EP - 1516
JO - Organometallics
JF - Organometallics
IS - 8
ER -