TY - JOUR
T1 - Population viability analysis as a tool in wildlife conservation policy
T2 - With reference to Australia
AU - Lindenmayer, David B.
AU - Clark, Tim W.
AU - Lacy, Robert C.
AU - Thomas, Virginia C.
PY - 1993/11
Y1 - 1993/11
N2 - Wildlife conservation policy for endangered species restoration follows a six-phase process. Population viability analysis (PVA) can play a major contributing role in four of these. PVA, as discussed here, is a technique where extinction vulnerabilities of small populations are estimated using computer simulation modeling. The benefits and limitations of using PVA in wildlife decision and policy processes are reviewed based on our direct experience. PVA permits decision makers to set time frames for management, estimate the required magnitude of restoration efforts, identify quantitative targets for species recovery, and select, implement, monitor, and evaluate management strategies. PVA is of greatest value for rare species policy and management. However, a limitation of PVA simulation models is that they are constrained by the amount of biological data available, and such data are difficult to obtain from small populations that are at immediate risk of extinction. These problems may be overcome with improved models and more data. Our experience shows benefits of PVA far outweigh its limitations, and applications of the approach are most useful when integrated with decision analysis and completed within an adaptive management philosophy. PVAs have been carried out for 14 Victorian species and less used elsewhere in Australia. Management and recovery plans are developed from these PVAs. We recommend that PVA be used to guide research programs, develop conservation strategies, and inform decision and policy making for both endangered and nonendangered species because it can significantly improve many aspects of natural resource policy and management.
AB - Wildlife conservation policy for endangered species restoration follows a six-phase process. Population viability analysis (PVA) can play a major contributing role in four of these. PVA, as discussed here, is a technique where extinction vulnerabilities of small populations are estimated using computer simulation modeling. The benefits and limitations of using PVA in wildlife decision and policy processes are reviewed based on our direct experience. PVA permits decision makers to set time frames for management, estimate the required magnitude of restoration efforts, identify quantitative targets for species recovery, and select, implement, monitor, and evaluate management strategies. PVA is of greatest value for rare species policy and management. However, a limitation of PVA simulation models is that they are constrained by the amount of biological data available, and such data are difficult to obtain from small populations that are at immediate risk of extinction. These problems may be overcome with improved models and more data. Our experience shows benefits of PVA far outweigh its limitations, and applications of the approach are most useful when integrated with decision analysis and completed within an adaptive management philosophy. PVAs have been carried out for 14 Victorian species and less used elsewhere in Australia. Management and recovery plans are developed from these PVAs. We recommend that PVA be used to guide research programs, develop conservation strategies, and inform decision and policy making for both endangered and nonendangered species because it can significantly improve many aspects of natural resource policy and management.
KW - Australia
KW - Population viability analysis
KW - Small populations
KW - Wildlife conservation and policy
UR - http://www.scopus.com/inward/record.url?scp=0027330633&partnerID=8YFLogxK
U2 - 10.1007/BF02393895
DO - 10.1007/BF02393895
M3 - Article
AN - SCOPUS:0027330633
SN - 0364-152X
VL - 17
SP - 745
EP - 758
JO - Environmental Management
JF - Environmental Management
IS - 6
ER -