Practical linear models for large-scale one-class collaborative filtering

Suvash Sedhain, Hung Bui, Jaya Kawale, Nikos Vlassis, Branislav Kveton, Aditya Krishna Menon, Trung Bui, Scott Sanner

    Research output: Contribution to journalConference articlepeer-review

    16 Citations (Scopus)

    Abstract

    Collaborative filtering has emerged as the de facto approach to personalized recommendation problems. However, a scenario that has proven difficult in practice is the one-class collaborative filtering case (OC-CF), where one has examples of items that a user prefers, but no examples of items they do not prefer. In such cases, it is desirable to have recommendation algorithms that are personalized, learning-based, and highly scalable. Existing linear recommenders for OC-CF achieve good performance in benchmarking tasks, but they involve solving a large number of a regression subproblems, limiting their applicability to large-scale problems. We show that it is possible to scale up linear recommenders to big data by learning an OCCF model in a randomized low-dimensional embedding of the user-item interaction matrix. Our algorithm, Linear-FLow, achieves state-of-the-art performance in a comprehensive set of experiments on standard benchmarks as well as real data.

    Original languageEnglish
    Pages (from-to)3854-3860
    Number of pages7
    JournalIJCAI International Joint Conference on Artificial Intelligence
    Volume2016-January
    Publication statusPublished - 2016
    Event25th International Joint Conference on Artificial Intelligence, IJCAI 2016 - New York, United States
    Duration: 9 Jul 201615 Jul 2016

    Fingerprint

    Dive into the research topics of 'Practical linear models for large-scale one-class collaborative filtering'. Together they form a unique fingerprint.

    Cite this