Abstract
Palaeogeographical reconstructions of the Australian and Antarctic margins based on matching basement structures are commonly difficult to reconcile with those derived from ocean-floor magnetic anomalies and plate vectors. Following identification of a previously unmapped crustal-scale structure in the southern part of the early Palaeozoic Delamerian orogen (Coorong Shear Zone), a more tightly constrained plate reconstruction for these margins is proposed. This reconstruction places the Coorong Shear Zone opposite the Mertz Shear Zone in Antarctica and lends itself to a revised interpretation of continental rifting along Australia's southern margin in which rift basin architecture, margin segmentation and the formation of ocean-floor fracture zones are all linked to pre-existing basement structure and the reactivation of a few deep-rooted crustal structures inherited from the Delamerian orogeny in particular. Reactivation of the Coorong Shear Zone and other basement structures (Avoca-Sorell Fault Zone) during the earlier stages of rifting was accompanied by the partitioning of extensional strain and formation of late Jurassic-Early Cretaceous normal faults and half-graben in the Bight and otway basins with opposing NE-SW and NW-SE structural trends. Previously, the Mertz Shear Zone has been correlated with the Proterozoic Kalinjala Mylonite Zone in the Gawler Craton but this positions Australia 300-400 km too far east relative to Antarctica prior to breakup and fails to secure an equally satisfactory match in both basement geology and the superimposed extension-related structures.
Original language | English |
---|---|
Pages (from-to) | 365-377 |
Number of pages | 13 |
Journal | Journal of the Geological Society |
Volume | 170 |
Issue number | 2 |
DOIs | |
Publication status | Published - Mar 2013 |