Abstract
Development and expansion of high-avidity T cell populations may be important for the success of immunization strategies against HIV and other pathogens that have presented major problems for vaccine development. We have used tetrameric-MHC complexes ex vivo and lytic assays to show that 'prime-boost' immunization with DNA vaccines and recombinant poxvirus vectors generates high frequencies of cytotoxic T lymphocytes (CTL) that recognize target cells expressing very low levels of specific antigen. These cells persist for at least 6 months at levels representing ∼10% of the CD8+ T cell population. Using a novel in vivo assay, we also found that prime-boost immunized animals were capable of eliminating target cells expressing 10- to 100-fold less immunogenic peptide than mice given either vector alone. In addition, viral challenge led to rapid expansion of CTL effectors in prime-boost groups, to levels representing >30% of total CD8+ T cell numbers. Strategies that generate specific T cells of high avidity, optimizing early detection of infected cells, offer new hope for effective prophylaxis and immunotherapy.
Original language | English |
---|---|
Pages (from-to) | 31-37 |
Number of pages | 7 |
Journal | International Immunology |
Volume | 14 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2002 |