TY - JOUR
T1 - Prion channel proteins and their role in vacuolation and neurodegenerative diseases
AU - Kourie, Joseph I.
PY - 2002/9
Y1 - 2002/9
N2 - The prion encephalopathies, which are characterized by neuropathological changes that include vacuolation, astrocytosis, the development of amyloid plaques and neuronal loss, are associated with the conversion of a normal cellular isoform of prion protein (PrPc) to an abnormal pathologic scrapie isoform (PrPSc). The use of PrP[106-126] and its isoforms in studies of channels in lipid bilayers has revealed that it forms heterogeneous channels reflecting modifications in the peptide's structure and differences in the properties of the formed oligomeric aggregates and their intermediates. We propose that the accumulation of pathological isoforms of prion are linked to membrane abnormalities and vacuolation in prion diseases. The interlinked changes in membrane fluidity and endogenous channels induced by prion isoforms can occur independently and concurrently with channel formation, i.e. they are not mutually exclusive. We suggest that vacuolation is a cellular response triggered in order to immobilize pathological prion isoforms having the ability to form channels that compromise cellular membranes. This mechanism is similar to that of other channel-forming proteins that induce vacuolation, e.g. the well-established VacA of Helicobacter pylori, Vero cells and aerolysin, as well as melittin-induced micellization and membrane fusion. We conclude that channel formation is part of the molecular mechanisms responsible for the vacuolation associated with prion diseases. The initial vacuolation could be an adaptive cellular response to compartmentalize the increase in pathogenic prion isoforms, while an excessive accumulation of pathologic prion isoforms in later stages represents the inability of the cell to continue to compartmentalize these misfolded proteins in vacuoles.
AB - The prion encephalopathies, which are characterized by neuropathological changes that include vacuolation, astrocytosis, the development of amyloid plaques and neuronal loss, are associated with the conversion of a normal cellular isoform of prion protein (PrPc) to an abnormal pathologic scrapie isoform (PrPSc). The use of PrP[106-126] and its isoforms in studies of channels in lipid bilayers has revealed that it forms heterogeneous channels reflecting modifications in the peptide's structure and differences in the properties of the formed oligomeric aggregates and their intermediates. We propose that the accumulation of pathological isoforms of prion are linked to membrane abnormalities and vacuolation in prion diseases. The interlinked changes in membrane fluidity and endogenous channels induced by prion isoforms can occur independently and concurrently with channel formation, i.e. they are not mutually exclusive. We suggest that vacuolation is a cellular response triggered in order to immobilize pathological prion isoforms having the ability to form channels that compromise cellular membranes. This mechanism is similar to that of other channel-forming proteins that induce vacuolation, e.g. the well-established VacA of Helicobacter pylori, Vero cells and aerolysin, as well as melittin-induced micellization and membrane fusion. We conclude that channel formation is part of the molecular mechanisms responsible for the vacuolation associated with prion diseases. The initial vacuolation could be an adaptive cellular response to compartmentalize the increase in pathogenic prion isoforms, while an excessive accumulation of pathologic prion isoforms in later stages represents the inability of the cell to continue to compartmentalize these misfolded proteins in vacuoles.
KW - Channel-forming peptides
KW - Prions
KW - Vacuolation
UR - http://www.scopus.com/inward/record.url?scp=0036735015&partnerID=8YFLogxK
U2 - 10.1007/s00249-002-0242-2
DO - 10.1007/s00249-002-0242-2
M3 - Article
SN - 0175-7571
VL - 31
SP - 409
EP - 416
JO - European Biophysics Journal
JF - European Biophysics Journal
IS - 5
ER -