Privacy-preserving matching of similar patients

Dinusha Vatsalan*, Peter Christen

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    55 Citations (Scopus)

    Abstract

    The identification of similar entities represented by records in different databases has drawn considerable attention in many application areas, including in the health domain. One important type of entity matching application that is vital for quality healthcare analytics is the identification of similar patients, known as similar patient matching. A key component of identifying similar records is the calculation of similarity of the values in attributes (fields) between these records. Due to increasing privacy and confidentiality concerns, using the actual attribute values of patient records to identify similar records across different organizations is becoming non-trivial because the attributes in such records often contain highly sensitive information such as personal and medical details of patients. Therefore, the matching needs to be based on masked (encoded) values while being effective and efficient to allow matching of large databases.Bloom filter encoding has widely been used as an efficient masking technique for privacy-preserving matching of string and categorical values. However, no work on Bloom filter-based masking of numerical data, such as integer (e.g. age), floating point (e.g. body mass index), and modulus (numbers wrap around upon reaching a certain value, e.g. date and time), which are commonly required in the health domain, has been presented in the literature. We propose a framework with novel methods for masking numerical data using Bloom filters, thereby facilitating the calculation of similarities between records. We conduct an empirical study on publicly available real-world datasets which shows that our framework provides efficient masking and achieves similar matching accuracy compared to the matching of actual unencoded patient records.

    Original languageEnglish
    Pages (from-to)285-298
    Number of pages14
    JournalJournal of Biomedical Informatics
    Volume59
    DOIs
    Publication statusPublished - 1 Feb 2016

    Fingerprint

    Dive into the research topics of 'Privacy-preserving matching of similar patients'. Together they form a unique fingerprint.

    Cite this