Probabilistic Saturations and Alt’s Problem

Jonathan D. Hauenstein*, Martin Helmer

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    2 Citations (Scopus)

    Abstract

    Alt’s problem, formulated in 1923, is to count the number of four-bar linkages whose coupler curve interpolates nine general points in the plane. This problem can be phrased as counting the number of solutions to a system of polynomial equations which was first solved numerically using homotopy continuation by Wampler, Morgan, and Sommese in 1992. Since there is still not a proof that all solutions were obtained, we consider upper bounds for Alt’s problem by counting the number of solutions outside of the base locus to a system arising as the general linear combination of polynomials. In particular, we derive effective symbolic and numeric methods for studying such systems using probabilistic saturations that can be employed using both finite fields and floating-point computations. We give bounds on the size of finite field required to achieve a desired level of certainty. These methods can also be applied to many other problems where similar systems arise such as computing the volumes of Newton-Okounkov bodies and computing intersection theoretic invariants including Euler characteristics, Chern classes, and Segre classes.

    Original languageEnglish
    Pages (from-to)975-987
    Number of pages13
    JournalExperimental Mathematics
    Volume31
    Issue number3
    DOIs
    Publication statusPublished - 2022

    Fingerprint

    Dive into the research topics of 'Probabilistic Saturations and Alt’s Problem'. Together they form a unique fingerprint.

    Cite this