Abstract
The band structure of self-assembled InAs quantum dots, embedded in a GaAs matrix, is probed with capacitance-voltage spectroscopy and photoluminescence (PL) spectroscopy. The electron energy levels in the quantum dots with respect to the electron ground state of the wetting layer (WL) are determined from the capacitance-voltage measurements with a linear lever arm approximation. In the region where the linear lever arm approximation is not valid anymore (after the charging of the WL), the energetic distance from the electron ground state of the WL to the GaAs conduction band edge can be indirectly inferred from a numerical simulation of the conduction band under different gate voltages. In combination with PL measurements, the complete energy band diagram of the quantum dot sample is extracted.
Original language | English |
---|---|
Article number | 193111 |
Journal | Applied Physics Letters |
Volume | 92 |
Issue number | 19 |
DOIs | |
Publication status | Published - 2008 |