TY - JOUR
T1 - Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces
AU - Singh, Ranjan
AU - Al-Naib, Ibraheem
AU - Chowdhury, Dibakar Roy
AU - Cong, Longqing
AU - Rockstuhl, Carsten
AU - Zhang, Weili
PY - 2014/8/25
Y1 - 2014/8/25
N2 - The coupling of multiple plasmonic resonators that sustain bright or dark modes provide intriguing spectral signatures. However, probing the onset of coupling effects while engaging the resonators with an increasing proximity has not yet been studied experimentally in detail. Nevertheless, this is of utmost importance to bridge the phenomenological understanding with the peculiarities of real-world-samples. Here, we take advantage of the ability to control spatial dimensions of THz metasurfaces deep in the sub-wavelength domain to study different regimes that occur while coupling split-ring-resonators that sustain a bright and a dark mode with increasing strength. We identify the length scales at which the resonators are uncoupled and then enter the regimes of weak, moderate, and strong coupling. It is shown that a strong coupling takes place only at distances smaller than one hundredth of the resonance wavelength. Understanding the features that emerge from such hybridization is important to take advantage of fundamental effects in metamaterials such as classical analogs of electromagnetically induced transparency, lasing spaser, near-field manipulation, and sensing with dark mode resonances.
AB - The coupling of multiple plasmonic resonators that sustain bright or dark modes provide intriguing spectral signatures. However, probing the onset of coupling effects while engaging the resonators with an increasing proximity has not yet been studied experimentally in detail. Nevertheless, this is of utmost importance to bridge the phenomenological understanding with the peculiarities of real-world-samples. Here, we take advantage of the ability to control spatial dimensions of THz metasurfaces deep in the sub-wavelength domain to study different regimes that occur while coupling split-ring-resonators that sustain a bright and a dark mode with increasing strength. We identify the length scales at which the resonators are uncoupled and then enter the regimes of weak, moderate, and strong coupling. It is shown that a strong coupling takes place only at distances smaller than one hundredth of the resonance wavelength. Understanding the features that emerge from such hybridization is important to take advantage of fundamental effects in metamaterials such as classical analogs of electromagnetically induced transparency, lasing spaser, near-field manipulation, and sensing with dark mode resonances.
UR - http://www.scopus.com/inward/record.url?scp=84907301247&partnerID=8YFLogxK
U2 - 10.1063/1.4893726
DO - 10.1063/1.4893726
M3 - Article
SN - 0003-6951
VL - 105
JO - Applied Physics Letters
JF - Applied Physics Letters
IS - 8
M1 - 081108
ER -