Progress in thermal transport modeling of Carbonate-based reacting systems

Lindsey Yue, Leanne Reich, Terrence Simon, Roman Bader, Wojciech Lipinski*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    17 Citations (Scopus)

    Abstract

    Purpose: Carbonate-based heterogeneous reacting systems are investigated for the applications of thermochemical carbon dioxide capture and energy storage. This paper aims to review recent progress in numerical modeling of thermal transport phenomena in such systems. Design/methodology/approach: Calcium oxide looping is selected as the model carbonate-based reacting system. Numerical models coupling heat and mass transfer to chemical kinetics are reviewed for solar-driven calcium oxide looping on the sorbent particle, particle bed, and reactor levels. Findings: At the sorbent particle level, a transient numerical model of heat and mass transfer coupled to chemical kinetics has been developed for a single particle undergoing cyclic calcination and carbonation driven by time-periodic boundary conditions. Modeling results show cycle times impact the maximum sorbent utilization and solar-to-chemical energy efficiency. At the reactor level, a model of heat and mass transfer coupled to chemical kinetics of calcination of a packed-bed reactor concept has been developed to estimate the reactor's performance. The model was used to finalize reactor geometry by evaluating pressure drops, temperature distributions, and heat transfer in the reactor. Originality/value: Successful solar thermochemical reactor designs maximize solar-to-chemical energy conversion by matching chemical kinetics to reactor heat and mass transfer processes. Modeling furthers the understanding of thermal transport phenomena and chemical kinetics interactions and guides the design of solar chemical reactors.

    Original languageEnglish
    Pages (from-to)1098-1107
    Number of pages10
    JournalInternational Journal of Numerical Methods for Heat and Fluid Flow
    Volume27
    Issue number5
    DOIs
    Publication statusPublished - 2017

    Fingerprint

    Dive into the research topics of 'Progress in thermal transport modeling of Carbonate-based reacting systems'. Together they form a unique fingerprint.

    Cite this