Abstract
Material costs will continually push photovoltaics to ever increasing efficiency to take advantage of
the cost leverage thereby available. Although a range of “third generation” approaches have been suggested for improving cell efficiency beyond that of a single cell, the tandem cell approach is the only one yet to have demonstrated improved experimental performance. The reliability of silicon wafer-based modules is well established. However, there are no obvious candidates for suitable high-bandgap cells to use with silicon in a tandem device that would not, to some extent, compromise this reliability and stability or depend upon toxic or scarce elements. This work seeks to engineer wide-bandgap silicon-based materials by using quantum-confinement in silicon quantum dots or quantum dots from other Group IV elements dispersed in a matrix of silicon carbide, nitride or oxide.
Keywords: Silicon, Quantum Dots, Tandem
the cost leverage thereby available. Although a range of “third generation” approaches have been suggested for improving cell efficiency beyond that of a single cell, the tandem cell approach is the only one yet to have demonstrated improved experimental performance. The reliability of silicon wafer-based modules is well established. However, there are no obvious candidates for suitable high-bandgap cells to use with silicon in a tandem device that would not, to some extent, compromise this reliability and stability or depend upon toxic or scarce elements. This work seeks to engineer wide-bandgap silicon-based materials by using quantum-confinement in silicon quantum dots or quantum dots from other Group IV elements dispersed in a matrix of silicon carbide, nitride or oxide.
Keywords: Silicon, Quantum Dots, Tandem
Original language | English |
---|---|
Title of host publication | Proc. of the 23rd European Photovoltaics Science and Engineering Conference (23E-PVSEC) |
Subtitle of host publication | Proc. on CD-ROM |
Editors | D Lincot, Heinz Ossenbrink, Peter Helm |
Pages | 1-4 |
Number of pages | 4 |
ISBN (Electronic) | 3–936338–24-8 |
Publication status | Published - 5 Sept 2008 |
Externally published | Yes |