TY - JOUR
T1 - Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7
AU - Holowaty, Melissa N.
AU - Zeghouf, Mahel
AU - Wu, Hong
AU - Tellam, Judy
AU - Athanasopoulos, Vicki
AU - Greenblatt, Jack
AU - Frappier, Lori
PY - 2003/8/8
Y1 - 2003/8/8
N2 - The Epstein-Barr nuclear antigen-1 (EBNA1) protein of Epstein-Barr virus is important for the replication, segregation, and transcriptional activation of latent Epstein-Barr virus genomes; has been implicated in host cell immortalization; and avoids proteasomal processing and cell-surface presentation. To gain insight into how EBNA1 fulfills these functions, we have profiled cellular protein interactions with EBNA1 using EBNA1 affinity chromatography and tandem affinity purification (TAP) of EBNA1 complexes from human cells (TAP-tagging). We discovered several new specific cellular protein interactions with EBNA1, including interactions with HAUSP/USP7, NAP1, template-activating factor-Iβ/SET, CK2, and PRMT5, all of which play important cell regulatory roles. The ubiquitin-specific protease USP7 is a known target of herpes simplex virus, and the USP7-binding region of EBNA1 was mapped to amino acids 395-450. A mutation in EBNA1 that selectively disrupted binding to USP7 was found to cause a 4-fold increase in EBNA1 replication activity but had no effect on EBNA1 turnover and cell-surface presentation. The results suggest that USP7 can regulate the replication function of EBNA1 and that EBNA1 may influence cellular events by sequestering key regulatory proteins.
AB - The Epstein-Barr nuclear antigen-1 (EBNA1) protein of Epstein-Barr virus is important for the replication, segregation, and transcriptional activation of latent Epstein-Barr virus genomes; has been implicated in host cell immortalization; and avoids proteasomal processing and cell-surface presentation. To gain insight into how EBNA1 fulfills these functions, we have profiled cellular protein interactions with EBNA1 using EBNA1 affinity chromatography and tandem affinity purification (TAP) of EBNA1 complexes from human cells (TAP-tagging). We discovered several new specific cellular protein interactions with EBNA1, including interactions with HAUSP/USP7, NAP1, template-activating factor-Iβ/SET, CK2, and PRMT5, all of which play important cell regulatory roles. The ubiquitin-specific protease USP7 is a known target of herpes simplex virus, and the USP7-binding region of EBNA1 was mapped to amino acids 395-450. A mutation in EBNA1 that selectively disrupted binding to USP7 was found to cause a 4-fold increase in EBNA1 replication activity but had no effect on EBNA1 turnover and cell-surface presentation. The results suggest that USP7 can regulate the replication function of EBNA1 and that EBNA1 may influence cellular events by sequestering key regulatory proteins.
UR - http://www.scopus.com/inward/record.url?scp=0041529593&partnerID=8YFLogxK
U2 - 10.1074/jbc.M303977200
DO - 10.1074/jbc.M303977200
M3 - Article
SN - 0021-9258
VL - 278
SP - 29987
EP - 29994
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 32
ER -