TY - JOUR
T1 - Protein synthesis inhibitors reveal differential regulation of mitogen-activated protein kinase and stress-activated protein kinase pathways that converge on Elk-1
AU - Zinck, Raymund
AU - Cahill, Michael A.
AU - Kracht, Michael
AU - Sachsenmaier, Christoph
AU - Hipskind, Robert A.
AU - Nordheim, Alfred
PY - 1995/9
Y1 - 1995/9
N2 - Inhibitors of protein synthesis, such as anisomycin and cycloheximide, lead to superinduction of immediate-early genes. We demonstrate that these two drugs activate intracellular signaling pathways involving both the mitogen-activated protein kinase (MAPK) and stress-activated protein kinase (SAPK) cascades. The activation of either pathway correlates with phosphorylation of the c-fos regulatory transcription factor Elk-1. In HeLa cells, anisomycin stabilizes c-fos mRNA when protein synthesis is inhibited to only 50%. Under these conditions, anisomycin, in contrast to cycloheximide, rapidly induces kinase activation and efficient Elk-1 phosphorylation. However, full inhibition of translation by either drug leads to prolonged activation of SAPK activity, while MAPK induction is transient. This correlates with prolonged Elk-1 phosphorylation and c-fos transcription. Elk-1 induction and c-fos activation are also observed in KB cells, in which anisomycin strongly induces SAPKs but not MAPKs. Purified p54 SAPKα efficiently phosphorylates the Elk-1 C-terminal domain in vitro and comigrates with anisomycin-activated kinases in in-gel kinase assays. Thus, Elk-1 provides a potential convergence point for the MAPK and SAPK signaling pathways. The activation of signal cascades and control of transcription factor function therefore represent prominent processes in immediate-early gene superinduction.
AB - Inhibitors of protein synthesis, such as anisomycin and cycloheximide, lead to superinduction of immediate-early genes. We demonstrate that these two drugs activate intracellular signaling pathways involving both the mitogen-activated protein kinase (MAPK) and stress-activated protein kinase (SAPK) cascades. The activation of either pathway correlates with phosphorylation of the c-fos regulatory transcription factor Elk-1. In HeLa cells, anisomycin stabilizes c-fos mRNA when protein synthesis is inhibited to only 50%. Under these conditions, anisomycin, in contrast to cycloheximide, rapidly induces kinase activation and efficient Elk-1 phosphorylation. However, full inhibition of translation by either drug leads to prolonged activation of SAPK activity, while MAPK induction is transient. This correlates with prolonged Elk-1 phosphorylation and c-fos transcription. Elk-1 induction and c-fos activation are also observed in KB cells, in which anisomycin strongly induces SAPKs but not MAPKs. Purified p54 SAPKα efficiently phosphorylates the Elk-1 C-terminal domain in vitro and comigrates with anisomycin-activated kinases in in-gel kinase assays. Thus, Elk-1 provides a potential convergence point for the MAPK and SAPK signaling pathways. The activation of signal cascades and control of transcription factor function therefore represent prominent processes in immediate-early gene superinduction.
UR - http://www.scopus.com/inward/record.url?scp=0029147738&partnerID=8YFLogxK
U2 - 10.1128/MCB.15.9.4930
DO - 10.1128/MCB.15.9.4930
M3 - Article
C2 - 7651411
AN - SCOPUS:0029147738
SN - 0270-7306
VL - 15
SP - 4930
EP - 4938
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
IS - 9
ER -