Abstract
Nanostructured III-V semiconductors are attractive for solar energy conversion applications owing to their excellent light harvesting and optoelectronic properties. Here, we present a protocol for scalable fabrication of III-V semiconductor nanopillars using a simple and cost-effective top-down approach, combining self-assembled random mask and plasma etching techniques. We describe the deposition of Au/SiO2 layers to prepare random etch mask. We then detail the fabrication of nanopillars and photocathodes. Finally, we demonstrate III-V semiconductor nanopillars as a photoelectrode for photoelectrochemical water splitting. For complete details on the use and execution of this protocol, please refer to Narangari et al. (2021).1
| Original language | English |
|---|---|
| Article number | 102237 |
| Journal | STAR Protocols |
| Volume | 4 |
| Issue number | 2 |
| DOIs | |
| Publication status | Published - 16 Jun 2023 |