Pyrite trace-element and sulfur isotope geochemistry of paleo-mesoproterozoic McArthur Basin: Proxy for oxidative weathering

Indrani Mukherjee, Ross R. Large, Stuart Bull, Daniel G. Gregory, Aleksandr S. Stepanov, Janaína Ávila, Trevor R. Ireland, Ross Corkrey

    Research output: Contribution to journalArticlepeer-review

    27 Citations (Scopus)


    Redox-sensitive trace elements and sulfur isotope compositions obtained via in situ analyses of sedimentary pyrites from marine black shales are used to track atmosphere-ocean redox conditions between ∼1730 and ∼1360 Ma in the McArthur Basin, northern Australia. Three black shale formations within the basin (Wollogorang Formation 1730 ± 3 Ma, Barney Creek Formation 1640 ± 3 Ma, and Upper Velkerri Formation 1361 ± 21 Ma) display systematic stratigraphic variations in pyrite trace-element compositions obtained using LA-ICP-MS. The concentrations of several trace elements and their ratios, such as Se, Zn, Se/Co, Ni/Co, Zn/Co, Mo/Co, Se/Bi, Zn/Bi, Ni/Bi, increase from the stratigraphically lower Wollogorang Formation to the Upper Velkerri Formation. Cobalt, Bi, Mo, Cu, and Tl show a consistent decrease in abundance while Ni, As, and Pb show no obvious trends. We interpret these trace element trends as a response to the gradual increase of oxygen in the atmosphere-ocean system from ∼1730 to 1360 Ma. Elements more mobile during erosion under rising atmospheric oxygen show an increase up stratigraphy (e.g., Zn, Se), whereas elements that are less mobile show a decrease (e.g., Co, Bi). We also propose the increase of elemental ratios (Se/Co, Ni/Co, Zn/Co, Mo/Co, Ni/Bi, and Zn/Bi) up stratigraphy are strong indicators of atmospheric oxygenation. Sulfur isotopic compositions of marine pyrite (δ34Spyrite) from these formations, obtained using SHRIMP-SI, are highly variable, with the Wollogorang Formation exhibiting less variation (δ34S = -29.4 to +9.5‰; mean -5.03‰) in comparison to the Barney Creek (δ34S = -13.8 to +41.8‰; mean +19.88‰) and Velkerri Formations (δ34S = -14.2 to +52.8‰; mean +26.9‰). We propose that the shift in mean δ34S to heavier values up-section corresponds to increasing deep water oxygenation from ∼1730 to 1360 Ma. Incursion of oxygenated waters possibly caused a decrease in the areal extent of anoxic areas, at the same time, creating a possibly efficient reducing system. A stronger reducing system caused the δ34S of the sedimentary pyrites to become progressively heavier. Interestingly, heavy δ34S in pyrites overlaps with the increase in the concentration of certain trace elements (and their ratios) in sedimentary pyrites (Se, Zn, Se/Co, Ni/Co, Zn/Co, Mo/Co, Ni/Bi, and Zn/Bi). This study concludes that there was a gradual increase of atmospheric oxygen accompanied by ocean oxygenation through the first ∼400 million years of the Boring Billion (1800-1400 Ma) in the McArthur Basin.

    Original languageEnglish
    Pages (from-to)1256-1272
    Number of pages17
    JournalAmerican Mineralogist
    Issue number9
    Publication statusPublished - 25 Sept 2019


    Dive into the research topics of 'Pyrite trace-element and sulfur isotope geochemistry of paleo-mesoproterozoic McArthur Basin: Proxy for oxidative weathering'. Together they form a unique fingerprint.

    Cite this