Pyruvate decarboxylase provides growing pollen tubes with a competitive advantage in Petunia

Nathalie Gass, Tatiana Glagotskaia, Stefan Mellema, Jeroen Stuurman, Mario Barone, Therese Mandel, Ute Roessner-Tunali, Cris Kuhlemeier*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

81 Citations (Scopus)

Abstract

Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrids, we isolated a null mutant in pollen-specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild-type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen-specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen-pistil interaction.

Original languageEnglish
Pages (from-to)2355-2368
Number of pages14
JournalPlant Cell
Volume17
Issue number8
Early online date1 Jul 2005
DOIs
Publication statusPublished - Aug 2005
Externally publishedYes

Fingerprint

Dive into the research topics of 'Pyruvate decarboxylase provides growing pollen tubes with a competitive advantage in Petunia'. Together they form a unique fingerprint.

Cite this