Abstract
We prove quadratic estimates for complex perturbations of Dirac-type operators, and thereby show that such operators have a bounded functional calculus. As an application we show that spectral projections of the Hodge-Dirac operator on compact manifolds depend analytically on L ∞ changes in the metric. We also recover a unified proof of many results in the Calderón program, including the Kato square root problem and the boundedness of the Cauchy operator on Lipschitz curves and surfaces.
Original language | English |
---|---|
Pages (from-to) | 455-497 |
Number of pages | 43 |
Journal | Inventiones Mathematicae |
Volume | 163 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2006 |