TY - JOUR
T1 - Quantum chemical mapping of initialization processes in RAFT polymerization
AU - Coote, Michelle L.
AU - Izgorodina, Ekaterina I.
AU - Krenske, Elizabeth H.
AU - Busch, Markus
AU - Barner-Kowollik, Christopher
PY - 2006/7/5
Y1 - 2006/7/5
N2 - We present the first ab initio simulation of a reversible addition fragmentation chain transfer (RAFT) polymerization. Using ab initio molecular orbital theory, we calculate the equilibrium constants for the first eight addition-fragmentation steps in the cyanoisopropyl dithiobenzoate-mediated polymerization of styrene. We then simulate the concentration profiles for the RAFT agent, and its unimeric and dimeric adducts, assuming standard experimental parameters for styrene homopolymerization and the addition of the styryl radical to the RAFT agent. The simulated data show excellent agreement with published experimental data, high-lighting the accuracy of quantum chemistry. In contrast, the currently used chain-length independent models fail to describe even the qualitative trends in the data, regardless of whether the fragmentation reaction is assumed to be fast or slow. The calculated chain-length dependent equilibrium constants are large, in agreement with the earlier proposed slow fragmentation model.
AB - We present the first ab initio simulation of a reversible addition fragmentation chain transfer (RAFT) polymerization. Using ab initio molecular orbital theory, we calculate the equilibrium constants for the first eight addition-fragmentation steps in the cyanoisopropyl dithiobenzoate-mediated polymerization of styrene. We then simulate the concentration profiles for the RAFT agent, and its unimeric and dimeric adducts, assuming standard experimental parameters for styrene homopolymerization and the addition of the styryl radical to the RAFT agent. The simulated data show excellent agreement with published experimental data, high-lighting the accuracy of quantum chemistry. In contrast, the currently used chain-length independent models fail to describe even the qualitative trends in the data, regardless of whether the fragmentation reaction is assumed to be fast or slow. The calculated chain-length dependent equilibrium constants are large, in agreement with the earlier proposed slow fragmentation model.
KW - Ab initio calculations
KW - Chain initialization
KW - Polymerization mechanism and kinetics
KW - Reversible addition fragmentation chain transfer (RAFT)
UR - http://www.scopus.com/inward/record.url?scp=33746041072&partnerID=8YFLogxK
U2 - 10.1002/marc.200600170
DO - 10.1002/marc.200600170
M3 - Article
SN - 1022-1336
VL - 27
SP - 1015
EP - 1022
JO - Macromolecular Rapid Communications
JF - Macromolecular Rapid Communications
IS - 13
ER -