TY - JOUR
T1 - Radical ring-opening polymerization of phosphorus heterocycles
T2 - Computational design of suitable phosphetane monomers
AU - Coote, Michelle L.
AU - Hodgson, Jennifer L.
AU - Krenske, Elizabeth H.
AU - Namazian, Mansoor
AU - Wild, S. Bruce
PY - 2007
Y1 - 2007
N2 - High-level ab initio calculations have been used to determine the propensities of various phosphetanes towards radical ring-opening polymerization. At the G3(MP2)-RAD level of theory, the propagation rate constants of 1-methylphosphetane (7.5 × 104 L mol?1 s?1), 1-phenylphosphetane (4.6 × 105 L mol ?1 s?1), cis,cis-2,4-dichloro-1-phenylphosphetane (3.8 × 107 L mol?1 s?1), cis,cis-2,4-difluoro- 1-phenylphosphetane (3.0 × 107 L mol?1 s ?1), and 1-phenyl-3-oxaphosphetane (4.0 × 106 L mol?1 s?1) are very high, rendering them unsuitable for copolymerization with common alkenes. In contrast, the propagation rate constants of 1-tert-butylphosphetane (1.7 × 103 L mol ?1 s?1) and cis,cis-2,4-dimethyl-1-phenylphosphetane (9.2 × 102 L mol?1 s?1) indicate that either incorporation of a t-butyl substituent at phosphorus or alkylation at the 2- and/or 4-positions will produce monomers with more compatible reactivities for copolymerization with alkenes. In the case of 1-tert-butylphosphetane, however, homolytic substitution of the propagating radical with the t-butyl substituent at P will be competitive with the propagation step and could affect the microstructure of the polymer. The borane adduct and the oxide of 1-phenylphosphetane were both found to be unreactive towards radical ring-opening. The calculations suggest that, for chiral phosphetanes, the ring-opening reaction is enantioselective at phosphorus and the resulting polymer will be isotactic.
AB - High-level ab initio calculations have been used to determine the propensities of various phosphetanes towards radical ring-opening polymerization. At the G3(MP2)-RAD level of theory, the propagation rate constants of 1-methylphosphetane (7.5 × 104 L mol?1 s?1), 1-phenylphosphetane (4.6 × 105 L mol ?1 s?1), cis,cis-2,4-dichloro-1-phenylphosphetane (3.8 × 107 L mol?1 s?1), cis,cis-2,4-difluoro- 1-phenylphosphetane (3.0 × 107 L mol?1 s ?1), and 1-phenyl-3-oxaphosphetane (4.0 × 106 L mol?1 s?1) are very high, rendering them unsuitable for copolymerization with common alkenes. In contrast, the propagation rate constants of 1-tert-butylphosphetane (1.7 × 103 L mol ?1 s?1) and cis,cis-2,4-dimethyl-1-phenylphosphetane (9.2 × 102 L mol?1 s?1) indicate that either incorporation of a t-butyl substituent at phosphorus or alkylation at the 2- and/or 4-positions will produce monomers with more compatible reactivities for copolymerization with alkenes. In the case of 1-tert-butylphosphetane, however, homolytic substitution of the propagating radical with the t-butyl substituent at P will be competitive with the propagation step and could affect the microstructure of the polymer. The borane adduct and the oxide of 1-phenylphosphetane were both found to be unreactive towards radical ring-opening. The calculations suggest that, for chiral phosphetanes, the ring-opening reaction is enantioselective at phosphorus and the resulting polymer will be isotactic.
UR - http://www.scopus.com/inward/record.url?scp=35148834728&partnerID=8YFLogxK
U2 - 10.1071/CH07121
DO - 10.1071/CH07121
M3 - Article
SN - 0004-9425
VL - 60
SP - 744
EP - 753
JO - Australian Journal of Chemistry
JF - Australian Journal of Chemistry
IS - 10
ER -