Radical ring-opening polymerization of phosphorus heterocycles: Computational design of suitable phosphetane monomers

Michelle L. Coote*, Jennifer L. Hodgson, Elizabeth H. Krenske, Mansoor Namazian, S. Bruce Wild

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    9 Citations (Scopus)

    Abstract

    High-level ab initio calculations have been used to determine the propensities of various phosphetanes towards radical ring-opening polymerization. At the G3(MP2)-RAD level of theory, the propagation rate constants of 1-methylphosphetane (7.5 × 104 L mol?1 s?1), 1-phenylphosphetane (4.6 × 105 L mol ?1 s?1), cis,cis-2,4-dichloro-1-phenylphosphetane (3.8 × 107 L mol?1 s?1), cis,cis-2,4-difluoro- 1-phenylphosphetane (3.0 × 107 L mol?1 s ?1), and 1-phenyl-3-oxaphosphetane (4.0 × 106 L mol?1 s?1) are very high, rendering them unsuitable for copolymerization with common alkenes. In contrast, the propagation rate constants of 1-tert-butylphosphetane (1.7 × 103 L mol ?1 s?1) and cis,cis-2,4-dimethyl-1-phenylphosphetane (9.2 × 102 L mol?1 s?1) indicate that either incorporation of a t-butyl substituent at phosphorus or alkylation at the 2- and/or 4-positions will produce monomers with more compatible reactivities for copolymerization with alkenes. In the case of 1-tert-butylphosphetane, however, homolytic substitution of the propagating radical with the t-butyl substituent at P will be competitive with the propagation step and could affect the microstructure of the polymer. The borane adduct and the oxide of 1-phenylphosphetane were both found to be unreactive towards radical ring-opening. The calculations suggest that, for chiral phosphetanes, the ring-opening reaction is enantioselective at phosphorus and the resulting polymer will be isotactic.

    Original languageEnglish
    Pages (from-to)744-753
    Number of pages10
    JournalAustralian Journal of Chemistry
    Volume60
    Issue number10
    DOIs
    Publication statusPublished - 2007

    Fingerprint

    Dive into the research topics of 'Radical ring-opening polymerization of phosphorus heterocycles: Computational design of suitable phosphetane monomers'. Together they form a unique fingerprint.

    Cite this