RANP: Resource Aware Neuron Pruning at Initialization for 3D CNNs

Zhiwei Xu, Thalaiyasingam Ajanthan, Vibhav Vineet, Richard Hartley

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

Although 3D Convolutional Neural Networks (CNNs) are essential for most learning based applications involving dense 3D data, their applicability is limited due to excessive memory and computational requirements. Compressing such networks by pruning therefore becomes highly desirable. However, pruning 3D CNNs is largely unexplored possibly because of the complex nature of typical pruning algorithms that embeds pruning into an iterative optimization paradigm. In this work, we introduce a Resource Aware Neuron Pruning (RANP) algorithm that prunes 3D CNNs at initialization to high sparsity levels. Specifically, the core idea is to obtain an importance score for each neuron based on their sensitivity to the loss function. This neuron importance is then reweighted according to the neuron resource consumption related to FLOPs or memory. We demonstrate the effectiveness of our pruning method on 3D semantic segmentation with widely used 3D-UNets on ShapeNet and BraTS'18 as well as on video classification with MobileNetV2 and I3D on UCF101 dataset. In these experiments, our RANP leads to roughly 50%-95% reduction in FLOPs and 35%-80% reduction in memory with negligible loss in accuracy compared to the unpruned networks. This significantly reduces the computational resources required to train 3D CNNs. The pruned network obtained by our algorithm can also be easily scaled up and transferred to another dataset for training.

Original languageEnglish
Title of host publicationProceedings - 2020 International Conference on 3D Vision, 3DV 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages180-189
Number of pages10
ISBN (Electronic)9781728181288
DOIs
Publication statusPublished - Nov 2020
Externally publishedYes
Event8th International Conference on 3D Vision, 3DV 2020 - Virtual, Fukuoka, Japan
Duration: 25 Nov 202028 Nov 2020

Publication series

NameProceedings - 2020 International Conference on 3D Vision, 3DV 2020

Conference

Conference8th International Conference on 3D Vision, 3DV 2020
Country/TerritoryJapan
CityVirtual, Fukuoka
Period25/11/2028/11/20

Fingerprint

Dive into the research topics of 'RANP: Resource Aware Neuron Pruning at Initialization for 3D CNNs'. Together they form a unique fingerprint.

Cite this