TY - JOUR
T1 - Rational Design of Solution-Processed Ti-Fe-O Ternary Oxides for Efficient Planar CH3NH3PbI3 Perovskite Solar Cells with Suppressed Hysteresis
AU - Li, Xin
AU - Hao, Feng
AU - Zhao, Xingyue
AU - Yin, Xuewen
AU - Yao, Zhibo
AU - Guo, Ying
AU - Shen, Heping
AU - Lin, Hong
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/10/11
Y1 - 2017/10/11
N2 - Electron-extraction layer (EEL) plays a critical role in determining the charge extraction and the power conversion efficiencies of the organometal-halide perovskite solar cells (PSCs). In this work, Ti-Fe-O ternary oxides were first developed to work as an efficient EEL in planar PSC. Compared with the widely used TiOx and the pure FeOx, the ternary composites show superior properties in multiple aspects including the excellent stability of the precursor solution, good coverage on the substrates, outstanding electrical properties, and suitable energy levels. By varying the Fe content from 0 to 100% in the Ti-Fe-O composites, the conductivity of the resultant compact layer was markedly improved, confirmed by consistent results from the conductive atomic force microscopy and the linear sweep voltammetry measurements. Meanwhile, the compositional engineering tunes the energy level alignment of the Ti-Fe-O EEL/CH3NH3PbI3 interface to a region that is favorable for obtaining excellent charge-extraction property. The combinational advantages of the Ti-Fe-O composites significantly improved the photovoltaic performance of the as-prepared solar cells. An increase of over 20% in the short-circuit current (JSC) density has been achieved due to a modified EEL conductivity and energy alignment with the perovskite layer. The reduction in the surface recombination and enhancement of the charge collection efficiency also result in about 15% increase in the fill factor. Notably, the device also showed remarkably alleviated hysteresis behavior, revealing a prominently inhibited surface recombination.
AB - Electron-extraction layer (EEL) plays a critical role in determining the charge extraction and the power conversion efficiencies of the organometal-halide perovskite solar cells (PSCs). In this work, Ti-Fe-O ternary oxides were first developed to work as an efficient EEL in planar PSC. Compared with the widely used TiOx and the pure FeOx, the ternary composites show superior properties in multiple aspects including the excellent stability of the precursor solution, good coverage on the substrates, outstanding electrical properties, and suitable energy levels. By varying the Fe content from 0 to 100% in the Ti-Fe-O composites, the conductivity of the resultant compact layer was markedly improved, confirmed by consistent results from the conductive atomic force microscopy and the linear sweep voltammetry measurements. Meanwhile, the compositional engineering tunes the energy level alignment of the Ti-Fe-O EEL/CH3NH3PbI3 interface to a region that is favorable for obtaining excellent charge-extraction property. The combinational advantages of the Ti-Fe-O composites significantly improved the photovoltaic performance of the as-prepared solar cells. An increase of over 20% in the short-circuit current (JSC) density has been achieved due to a modified EEL conductivity and energy alignment with the perovskite layer. The reduction in the surface recombination and enhancement of the charge collection efficiency also result in about 15% increase in the fill factor. Notably, the device also showed remarkably alleviated hysteresis behavior, revealing a prominently inhibited surface recombination.
KW - TiâFeâO oxides
KW - conductivity
KW - coverage
KW - electron-extraction layer
KW - energy level alignment
KW - hysteresis
KW - planar perovskite solar cells
UR - http://www.scopus.com/inward/record.url?scp=85031312088&partnerID=8YFLogxK
U2 - 10.1021/acsami.7b08536
DO - 10.1021/acsami.7b08536
M3 - Article
SN - 1944-8244
VL - 9
SP - 34833
EP - 34843
JO - ACS applied materials & interfaces
JF - ACS applied materials & interfaces
IS - 40
ER -