TY - GEN
T1 - Re-ranking person re-identification with k-reciprocal encoding
AU - Zhong, Zhun
AU - Zheng, Liang
AU - Cao, Donglin
AU - Li, Shaozi
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/11/6
Y1 - 2017/11/6
N2 - When considering person re-identification (re-ID) as a retrieval process, re-ranking is a critical step to improve its accuracy. Yet in the re-ID community, limited effort has been devoted to re-ranking, especially those fully automatic, unsupervised solutions. In this paper, we propose a k-reciprocal encoding method to re-rank the re-ID results. Our hypothesis is that if a gallery image is similar to the probe in the k-reciprocal nearest neighbors, it is more likely to be a true match. Specifically, given an image, a k- reciprocal feature is calculated by encoding its k-reciprocal nearest neighbors into a single vector, which is used for reranking under the Jaccard distance. The final distance is computed as the combination of the original distance and the Jaccard distance. Our re-ranking method does not require any human interaction or any labeled data, so it is applicable to large-scale datasets. Experiments on the largescale Market-1501, CUHK03, MARS, and PRW datasets confirm the effectiveness of our method1.
AB - When considering person re-identification (re-ID) as a retrieval process, re-ranking is a critical step to improve its accuracy. Yet in the re-ID community, limited effort has been devoted to re-ranking, especially those fully automatic, unsupervised solutions. In this paper, we propose a k-reciprocal encoding method to re-rank the re-ID results. Our hypothesis is that if a gallery image is similar to the probe in the k-reciprocal nearest neighbors, it is more likely to be a true match. Specifically, given an image, a k- reciprocal feature is calculated by encoding its k-reciprocal nearest neighbors into a single vector, which is used for reranking under the Jaccard distance. The final distance is computed as the combination of the original distance and the Jaccard distance. Our re-ranking method does not require any human interaction or any labeled data, so it is applicable to large-scale datasets. Experiments on the largescale Market-1501, CUHK03, MARS, and PRW datasets confirm the effectiveness of our method1.
UR - http://www.scopus.com/inward/record.url?scp=85030225245&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2017.389
DO - 10.1109/CVPR.2017.389
M3 - Conference contribution
T3 - Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
SP - 3652
EP - 3661
BT - Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Y2 - 21 July 2017 through 26 July 2017
ER -