Real-Time Profiling of Solid-State Nanopores during Solution-Phase Nanofabrication

Y. M.Nuwan D.Y. Bandara, Buddini Iroshika Karawdeniya, Jason R. Dwyer*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

We describe a method for simply characterizing the size and shape of a nanopore during solution-based fabrication and surface modification, using only low-overhead approaches native to conventional nanopore measurements. Solution-based nanopore fabrication methods are democratizing nanopore science by supplanting the traditional use of charged-particle microscopes for fabrication, but nanopore profiling has customarily depended on microscopic examination. Our approach exploits the dependence of nanopore conductance in solution on nanopore size, shape, and surface chemistry in order to characterize nanopores. Measurements of the changing nanopore conductance during formation by etching or deposition can be analyzed using our method to characterize the nascent nanopore size and shape, beyond the typical cylindrical approximation, in real-time. Our approach thus accords with ongoing efforts to broaden the accessibility of nanopore science from fabrication through use: it is compatible with conventional instrumentation and offers straightforward nanoscale characterization of the core tool of the field.

Original languageEnglish
Pages (from-to)30583-30589
Number of pages7
JournalACS applied materials & interfaces
Volume8
Issue number44
DOIs
Publication statusPublished - 9 Nov 2016
Externally publishedYes

Fingerprint

Dive into the research topics of 'Real-Time Profiling of Solid-State Nanopores during Solution-Phase Nanofabrication'. Together they form a unique fingerprint.

Cite this