Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60 Fe

A. Wallner*, J. Feige, N. Kinoshita, M. Paul, L. K. Fifield, R. Golser, M. Honda, U. Linnemann, H. Matsuzaki, S. Merchel, G. Rugel, S. G. Tims, P. Steier, T. Yamagata, S. R. Winkler

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    175 Citations (Scopus)

    Abstract

    The rate of supernovae in our local Galactic neighbourhood within a distance of about 100 parsecs from Earth is estimated to be one every 2-4 million years, based on the total rate in the Milky Way (2.0 ± 0.7 per century1,2). Recent massive-star and supernova activity in Earth's vicinity may be traced by radionuclides with half-lives of up to 100 million years3-6, if trapped in interstellar dust grains that penetrate the Solar System. One such radionuclide is 60Fe (with a half-life of 2.6 million years)7,8, which is ejected in supernova explosions and winds from massive stars1,2,9. Here we report that the 60Fe signal observed previously in deep-sea crusts10,11 is global, extended in time and of interstellar origin from multiple events. We analysed deep-sea archives from all major oceans for 60Fe deposition via the accretion of interstellar dust particles. Our results reveal 60 Fe interstellar influxes onto Earth at 1.5-3.2 million years ago and at 6.5-8.7 million years ago. The signal measured implies that a few per cent of fresh 60Fe was captured in dust and deposited on Earth. Our findings indicate multiple supernova and massive-star events during the last ten million years at distances of up to 100 parsecs.

    Original languageEnglish
    Pages (from-to)69-72
    Number of pages4
    JournalNature
    Volume532
    Issue number7597
    DOIs
    Publication statusPublished - 6 Apr 2016

    Fingerprint

    Dive into the research topics of 'Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60 Fe'. Together they form a unique fingerprint.

    Cite this