TY - JOUR
T1 - Recent speciation and limited phylogeographic structure in Mixophyes frogs from the Australian Wet Tropics
AU - Oza, Anuja U.
AU - Lovett, Katharine E.
AU - Williams, Stephen E.
AU - Moritz, Craig
PY - 2012/1
Y1 - 2012/1
N2 - Through a combination of macroecological, paleoecological, and phylogeographical analyses, the rainforests of the Australian Wet Tropics (AWT) have emerged as a useful model for understanding sensitivity of species to past climatic change and, hence, for predicting vulnerability to future change. To extend the ecological breadth of comparative phylogeographic analyses, we investigate a clade of myobatrachid frogs, Mixophyes, a genus of large, stream-breeding but terrestrial frogs, three species of which are endemic to rainforests of the AWT. Here we (i) combine mtDNA, allozyme, and morphological data to refine knowledge of the geographic and environmental distribution of each taxon, (ii) resolve relationships among species, and (iii) use mtDNA phylogeography to infer responses of the three taxa to late-Pleistocene and Holocene climatic change. Each of the three species (Mixophyes carbinensis, Mixophyes coggeri, and Mixophyes schevilli) is effectively diagnosed by mtDNA, with the two small-bodied, allopatric species (M. carbinensis and M. schevilli) being sister-taxa. Mixophyes have a very different history from other AWT amphibians, with more recent speciation (net divergences <5%) and much lower and geographically unstructured mtDNA diversity within each species. The combination of low diversity (θ Π< 0.36%) and strong signals of recent population expansion (Fu's Fs < 0) suggests very high sensitivity to climate-driven rainforest dynamics, perhaps due to their large body size, low population density, and their requirement for both wet forest-floor litter and streams suitable for breeding. The results further emphasize the heterogeneity of species' responses to climate change and suggest that species dependent on multiple habitat types could be especially vulnerable.
AB - Through a combination of macroecological, paleoecological, and phylogeographical analyses, the rainforests of the Australian Wet Tropics (AWT) have emerged as a useful model for understanding sensitivity of species to past climatic change and, hence, for predicting vulnerability to future change. To extend the ecological breadth of comparative phylogeographic analyses, we investigate a clade of myobatrachid frogs, Mixophyes, a genus of large, stream-breeding but terrestrial frogs, three species of which are endemic to rainforests of the AWT. Here we (i) combine mtDNA, allozyme, and morphological data to refine knowledge of the geographic and environmental distribution of each taxon, (ii) resolve relationships among species, and (iii) use mtDNA phylogeography to infer responses of the three taxa to late-Pleistocene and Holocene climatic change. Each of the three species (Mixophyes carbinensis, Mixophyes coggeri, and Mixophyes schevilli) is effectively diagnosed by mtDNA, with the two small-bodied, allopatric species (M. carbinensis and M. schevilli) being sister-taxa. Mixophyes have a very different history from other AWT amphibians, with more recent speciation (net divergences <5%) and much lower and geographically unstructured mtDNA diversity within each species. The combination of low diversity (θ Π< 0.36%) and strong signals of recent population expansion (Fu's Fs < 0) suggests very high sensitivity to climate-driven rainforest dynamics, perhaps due to their large body size, low population density, and their requirement for both wet forest-floor litter and streams suitable for breeding. The results further emphasize the heterogeneity of species' responses to climate change and suggest that species dependent on multiple habitat types could be especially vulnerable.
KW - Australian Wet Tropics
KW - Mixophyes
KW - Phylogenetics
KW - Phylogeography
KW - Speciation
UR - http://www.scopus.com/inward/record.url?scp=83655161373&partnerID=8YFLogxK
U2 - 10.1016/j.ympev.2011.10.010
DO - 10.1016/j.ympev.2011.10.010
M3 - Article
SN - 1055-7903
VL - 62
SP - 407
EP - 413
JO - Molecular Phylogenetics and Evolution
JF - Molecular Phylogenetics and Evolution
IS - 1
ER -