TY - JOUR
T1 - Reconciling mantle wedge thermal structure with arc lava thermobarometric determinations in oceanic subduction zones
AU - Perrin, Alexander
AU - Goes, Saskia
AU - Prytulak, Julie
AU - Davies, D. Rhodri
AU - Wilson, Cian
AU - Kramer, Stephan
N1 - Publisher Copyright:
© 2016. The Authors.
PY - 2016/10/1
Y1 - 2016/10/1
N2 - Subduction zone mantle wedge temperatures impact plate interaction, melt generation, and chemical recycling. However, it has been challenging to reconcile geophysical and geochemical constraints on wedge thermal structure. Here we chemically determine the equilibration pressures and temperatures of primitive arc lavas from worldwide intraoceanic subduction zones and compare them to kinematically driven thermal wedge models. We find that equilibration pressures are typically located in the lithosphere, starting just below the Moho, and spanning a wide depth range of ∼25 km. Equilibration temperatures are high for these depths, averaging ∼1300°C. We test for correlations with subduction parameters and find that equilibration pressures correlate with upper plate age, indicating overriding lithosphere thickness plays a role in magma equilibration. We suggest that most, if not all, thermobarometric pressure and temperature conditions reflect magmatic reequilibration at a mechanical boundary, rather than reflecting the conditions of major melt generation. The magma reequilibration conditions are difficult to reconcile, to a first order, with any of the conditions predicted by our dynamic models, with the exception of subduction zones with very young, thin upper plates. For most zones, a mechanism for substantially thinning the overriding plate is required. Most likely thinning is localized below the arc, as kinematic thinning above the wedge corner would lead to a hot fore arc, incompatible with fore-arc surface heat flow and seismic properties. Localized subarc thermal erosion is consistent with seismic imaging and exhumed arc structures. Furthermore, such thermal erosion can serve as a weakness zone and affect subsequent plate evolution.
AB - Subduction zone mantle wedge temperatures impact plate interaction, melt generation, and chemical recycling. However, it has been challenging to reconcile geophysical and geochemical constraints on wedge thermal structure. Here we chemically determine the equilibration pressures and temperatures of primitive arc lavas from worldwide intraoceanic subduction zones and compare them to kinematically driven thermal wedge models. We find that equilibration pressures are typically located in the lithosphere, starting just below the Moho, and spanning a wide depth range of ∼25 km. Equilibration temperatures are high for these depths, averaging ∼1300°C. We test for correlations with subduction parameters and find that equilibration pressures correlate with upper plate age, indicating overriding lithosphere thickness plays a role in magma equilibration. We suggest that most, if not all, thermobarometric pressure and temperature conditions reflect magmatic reequilibration at a mechanical boundary, rather than reflecting the conditions of major melt generation. The magma reequilibration conditions are difficult to reconcile, to a first order, with any of the conditions predicted by our dynamic models, with the exception of subduction zones with very young, thin upper plates. For most zones, a mechanism for substantially thinning the overriding plate is required. Most likely thinning is localized below the arc, as kinematic thinning above the wedge corner would lead to a hot fore arc, incompatible with fore-arc surface heat flow and seismic properties. Localized subarc thermal erosion is consistent with seismic imaging and exhumed arc structures. Furthermore, such thermal erosion can serve as a weakness zone and affect subsequent plate evolution.
KW - mantle wedge
KW - reequilibration
KW - subduction
KW - thermal models
KW - thermobarometry
KW - upper plate
UR - http://www.scopus.com/inward/record.url?scp=84996618776&partnerID=8YFLogxK
U2 - 10.1002/2016GC006527
DO - 10.1002/2016GC006527
M3 - Article
SN - 1525-2027
VL - 17
SP - 4105
EP - 4127
JO - Geochemistry, Geophysics, Geosystems
JF - Geochemistry, Geophysics, Geosystems
IS - 10
ER -