TY - GEN
T1 - Recovering faces from portraits with auxiliary facial attributes
AU - Shiri, Fatemeh
AU - Yu, Xin
AU - Porikli, Fatih
AU - Hartley, Richard
AU - Koniusz, Piotr
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/3/4
Y1 - 2019/3/4
N2 - Recovering a photorealistic face from an artistic portrait is a challenging task since crucial facial details are often distorted or completely lost in artistic compositions. To handle this loss, we propose an Attribute-guided Face Recovery from Portraits (AFRP) that utilizes a Face Recovery Network (FRN) and a Discriminative Network (DN). FRN consists of an autoencoder with residual block-embedded skip-connections and incorporates facial attribute vectors into the feature maps of input portraits at the bottleneck of the autoencoder. DN has multiple convolutional and fully-connected layers, and its role is to enforce FRN to generate authentic face images with corresponding facial attributes dictated by the input attribute vectors. For the preservation of identities, we impose the recovered and ground-truth faces to share similar visual features. Specifically, DN determines whether the recovered image looks like a real face and checks if the facial attributes extracted from the recovered image are consistent with given attributes. Our method can recover photorealistic identity-preserving faces with desired attributes from unseen stylized portraits, artistic paintings, and hand-drawn sketches. On large-scale synthesized and sketch datasets, we demonstrate that our face recovery method achieves state-of-the-art results.
AB - Recovering a photorealistic face from an artistic portrait is a challenging task since crucial facial details are often distorted or completely lost in artistic compositions. To handle this loss, we propose an Attribute-guided Face Recovery from Portraits (AFRP) that utilizes a Face Recovery Network (FRN) and a Discriminative Network (DN). FRN consists of an autoencoder with residual block-embedded skip-connections and incorporates facial attribute vectors into the feature maps of input portraits at the bottleneck of the autoencoder. DN has multiple convolutional and fully-connected layers, and its role is to enforce FRN to generate authentic face images with corresponding facial attributes dictated by the input attribute vectors. For the preservation of identities, we impose the recovered and ground-truth faces to share similar visual features. Specifically, DN determines whether the recovered image looks like a real face and checks if the facial attributes extracted from the recovered image are consistent with given attributes. Our method can recover photorealistic identity-preserving faces with desired attributes from unseen stylized portraits, artistic paintings, and hand-drawn sketches. On large-scale synthesized and sketch datasets, we demonstrate that our face recovery method achieves state-of-the-art results.
UR - http://www.scopus.com/inward/record.url?scp=85063570742&partnerID=8YFLogxK
U2 - 10.1109/WACV.2019.00049
DO - 10.1109/WACV.2019.00049
M3 - Conference contribution
T3 - Proceedings - 2019 IEEE Winter Conference on Applications of Computer Vision, WACV 2019
SP - 406
EP - 415
BT - Proceedings - 2019 IEEE Winter Conference on Applications of Computer Vision, WACV 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 19th IEEE Winter Conference on Applications of Computer Vision, WACV 2019
Y2 - 7 January 2019 through 11 January 2019
ER -