Redes neurais e análise estatística para classificação de mapas topográficos da córnea baseados em coeficientes de Zernike: Uma comparação quantitativa

Translated title of the contribution: Neural networks and statistical analysis for classification of corneal videokeratography maps based on Zernike coefficients: A quantitative comparison

Luis Alberto Vieira de Carvalho*, Marconi Soares Barbosa

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Purpose: The main goal of this study was to develop and compare two different techniques for classification of specific types of corneal shapes when Zernike coefficients are used as inputs. A feed-forward artificial Neural Network (NN) and discriminant analysis (DA) techniques were used. Methods: The inputs both for the NN and DA were the first 15 standard Zernike coefficients for 80 previously classified corneal elevation data files from an Eyesys System 2000 Videokeratograph (VK), installed at the Departamento de Oftalmologia of the Escola Paulista de Medicina, São Paulo. The NN had 5 output neurons which were associated with 5 typical corneal shapes: keratoconus, with-the-rule astigmatism, againstthe-rule astigmatism, "regular" or "normal" shape and post-PRK. Results: The NN and DA responses were statistically analyzed in terms of precision ([true positive+true negative]/total number of cases). Mean overall results for all cases for the NN and DA techniques were, respectively, 94% and 84.8%. Conclusion: Although we used a relatively small database, results obtained in the present study indicate that Zernike polynomials as descriptors of corneal shape may be a reliable parameter as input data for diagnostic automation of VK maps, using either NN or DA.

Translated title of the contributionNeural networks and statistical analysis for classification of corneal videokeratography maps based on Zernike coefficients: A quantitative comparison
Original languagePortuguese (Brazil)
Pages (from-to)337-341
Number of pages5
JournalArquivos Brasileiros de Oftalmologia
Volume71
Issue number3
DOIs
Publication statusPublished - 2008
Externally publishedYes

Fingerprint

Dive into the research topics of 'Neural networks and statistical analysis for classification of corneal videokeratography maps based on Zernike coefficients: A quantitative comparison'. Together they form a unique fingerprint.

Cite this