Reduced quasifission competition in fusion reactions forming neutron-rich heavy elements

K. Hammerton, Z. Kohley, D. J. Hinde, M. Dasgupta, A. Wakhle, E. Williams, V. E. Oberacker, A. S. Umar, I. P. Carter, K. J. Cook, J. Greene, D. Y. Jeung, D. H. Luong, S. D. McNeil, C. S. Palshetkar, D. C. Rafferty, C. Simenel, K. Stiefel

    Research output: Contribution to journalArticlepeer-review

    56 Citations (Scopus)

    Abstract

    Measurements of mass-angle distributions (MADs) for Cr + W reactions, providing a wide range in the neutron-to-proton ratio of the compound system, (N/Z)CN, have allowed for the dependence of quasifission on the (N/Z)CN to be determined in a model-independent way. Previous experimental and theoretical studies had produced conflicting conclusions. The experimental MADs reveal an increase in contact time and mass evolution of the quasifission fragments with increasing (N/Z)CN, which is indicative of an increase in the fusion probability. The experimental results are in agreement with microscopic time-dependent Hartree-Fock calculations of the quasifission process. The experimental and theoretical results favor the use of the most neutron-rich projectiles and targets for the production of heavy and superheavy nuclei.

    Original languageEnglish
    Article number041602
    JournalPhysical Review C - Nuclear Physics
    Volume91
    Issue number4
    DOIs
    Publication statusPublished - 21 Apr 2015

    Cite this