Abstract
We demonstrate a method to reduce number fluctuations in an ultracold atomic sample using real-time feedback. By measuring the Faraday rotation of an off-resonant probe laser beam with a pair of avalanche photodetectors in a polarimetric setup, we produce a proxy for the number of atoms in the sample. We iteratively remove a fraction of the excess atoms from the sample to converge on a target proxy value in a way that is insensitive to environmental perturbations and robust to errors in light polarization. Using absorption imaging for out-of-loop verification, we demonstrate a reduction in the number fluctuations from 3% to 0.45% for samples at a temperature of 16.4μK over the time scale of several hours, which is limited by temperature fluctuations, beam-pointing noise, and photon shot noise.
Original language | English |
---|---|
Article number | 064033 |
Journal | Physical Review Applied |
Volume | 16 |
Issue number | 6 |
DOIs | |
Publication status | Published - Dec 2021 |