TY - JOUR
T1 - Reduction potential, shadow prices, and pollution costs of agricultural pollutants in China
AU - Tang, Kai
AU - Gong, Chengzhu
AU - Wang, Dong
N1 - Publisher Copyright:
© 2015 Elsevier B.V.
PY - 2016/1/15
Y1 - 2016/1/15
N2 - This paper analyses the reduction potential, shadow prices, and pollution costs of agricultural pollutants in China based on provincial panel data for 2001-2010. Using a parameterized quadratic form for the directional output distance function, we find that if agricultural sectors in all provinces were to produce on the production frontier, China could potentially reduce agricultural emissions of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) by 16.0%, 16.2%, and 20.4%, respectively. Additionally, our results show that the shadow price of TN increased rapidly and continuously, while that of COD and TP fluctuated for the whole period. For the whole country, the average shadow price of COD, TN, and TP are 8266. Yuan/tonne, 25,560. Yuan/tonne, and 10,160. Yuan/tonne, respectively. The regional shadow prices of agricultural pollutants are unbalanced. Furthermore, we show that the pollution costs from emissions of COD, TN, and TP are 6.09% of the annual gross output value of the agricultural sector and are highest in the Western and lowest in the Eastern provinces. Our estimates suggest that there is scope for further pollution abatement and simultaneous output expansion for China's agriculture if farmers promote greater efficiency in their production process. Policymakers are required to dynamically adjust the pollution tax rates and ascertain the initial permit price in an emission trading system. Policymakers should also consider the different pollution costs for each province when making the reduction allocations within the agricultural sector.
AB - This paper analyses the reduction potential, shadow prices, and pollution costs of agricultural pollutants in China based on provincial panel data for 2001-2010. Using a parameterized quadratic form for the directional output distance function, we find that if agricultural sectors in all provinces were to produce on the production frontier, China could potentially reduce agricultural emissions of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) by 16.0%, 16.2%, and 20.4%, respectively. Additionally, our results show that the shadow price of TN increased rapidly and continuously, while that of COD and TP fluctuated for the whole period. For the whole country, the average shadow price of COD, TN, and TP are 8266. Yuan/tonne, 25,560. Yuan/tonne, and 10,160. Yuan/tonne, respectively. The regional shadow prices of agricultural pollutants are unbalanced. Furthermore, we show that the pollution costs from emissions of COD, TN, and TP are 6.09% of the annual gross output value of the agricultural sector and are highest in the Western and lowest in the Eastern provinces. Our estimates suggest that there is scope for further pollution abatement and simultaneous output expansion for China's agriculture if farmers promote greater efficiency in their production process. Policymakers are required to dynamically adjust the pollution tax rates and ascertain the initial permit price in an emission trading system. Policymakers should also consider the different pollution costs for each province when making the reduction allocations within the agricultural sector.
KW - Agricultural pollutant emissions
KW - China
KW - Parameterized directional output distance function
KW - Pollution cost
KW - Reduction potential
KW - Shadow price
UR - http://www.scopus.com/inward/record.url?scp=84941978906&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2015.09.013
DO - 10.1016/j.scitotenv.2015.09.013
M3 - Article
SN - 0048-9697
VL - 541
SP - 42
EP - 50
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -