Regeneration of hair follicles is modulated by flightless i (Flii) in a rodent vibrissa model

James M. Waters, Jessica E. Lindo, Ruth M. Arkell, Allison J. Cowin

    Research output: Contribution to journalArticlepeer-review

    17 Citations (Scopus)


    Regeneration of cells, tissues, and organs has long captured the attention of researchers for its obvious potential benefits in biomedical applications. Although mammals are notoriously poor at regeneration compared with many lower-order species, the hair follicle, paradoxically a defining characteristic of mammals, is capable of regeneration following partial amputation. To investigate the role of a negative regulator of wound healing, flightless I (Flii), on hair follicle regeneration, the bulbar region of vibrissae from rats as well as strains of mice expressing low (Flii +/-), normal (Flii +/+), and high (FLII Tg/Tg) levels of Flii were surgically amputated, and then allowed to regenerate in vivo. Macroscopic and histological assessment of the regeneration process revealed impaired or delayed regenerative potential in Flii / follicles. Regenerated follicles expressing high levels of Flii (FLII Tg/Tg) produced significantly longer terminal hair fibers. Immunohistochemical analysis was used to characterize the pattern of expression of Flii, as well as markers of hair follicle development and wound healing-associated factors during hair follicle regeneration. These studies confirmed that Flii appears to have a positive role in the regeneration of hair follicles, contrary to its negative influence on wound healing in skin.

    Original languageEnglish
    Pages (from-to)838-847
    Number of pages10
    JournalJournal of Investigative Dermatology
    Issue number4
    Publication statusPublished - Apr 2011


    Dive into the research topics of 'Regeneration of hair follicles is modulated by flightless i (Flii) in a rodent vibrissa model'. Together they form a unique fingerprint.

    Cite this