Regularity and Long-Time Existence

Ben Andrews*, Christopher Hopper

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

In Chaps. 4 and 6 we saw that the curvature under Ricci flow obeys a parabolic equation with quadratic nonlinearity. By appealing to this view, we would expect the same kind of regularity that is seen in parabolic equa- tions to apply to the curvature. In particular we want to show that bounds on curvature automatically induce a priori bounds on all derivatives of the curvature for positive times. In the literature these are known as Bernstein– Bando–Shi derivative estimates as they follow the strategy and techniques introduced by Bernstein (done in the early twentieth century) for proving gradient bounds via the maximum principle and were derived for the Ricci flow in [Ban87] and comprehensively by Shi in [Shi89]. Here we will only need the global derivative of curvature estimates (for various local estimates see [CCG+08, Chap. 14]). In the second section we use these bounds to prove long-time existence.

Original languageEnglish
Title of host publicationThe Ricci Flow in Riemannian Geometry
Subtitle of host publicationA Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem
PublisherSpringer Verlag
Pages137-143
Number of pages7
ISBN (Print)9783642159664
DOIs
Publication statusPublished - 2011

Publication series

NameLecture Notes in Mathematics
Volume2011
ISSN (Print)0075-8434
ISSN (Electronic)1617-9692

Fingerprint

Dive into the research topics of 'Regularity and Long-Time Existence'. Together they form a unique fingerprint.

Cite this