TY - GEN
T1 - Reinforcement learning via AIXI approximation
AU - Veness, Joel
AU - Siong Ng, Kee
AU - Hutter, Marcus
AU - Silver, David
PY - 2010
Y1 - 2010
N2 - This paper introduces a principled approach for the design of a scalable general reinforcement learning agent. This approach is based on a direct approximation of AIXI, a Bayesian optimality notion for general reinforcement learning agents. Previously, it has been unclear whether the theory of AIXI could motivate the design of practical algorithms. We answer this hitherto open question in the affirmative, by providing the first computationally feasible approximation to the AIXI agent. To develop our approximation, we introduce a Monte Carlo Tree Search algorithm along with an agent-specific extension of the Context Tree Weighting algorithm. Empirically, we present a set of encouraging results on a number of stochastic, unknown, and partially observable domains.
AB - This paper introduces a principled approach for the design of a scalable general reinforcement learning agent. This approach is based on a direct approximation of AIXI, a Bayesian optimality notion for general reinforcement learning agents. Previously, it has been unclear whether the theory of AIXI could motivate the design of practical algorithms. We answer this hitherto open question in the affirmative, by providing the first computationally feasible approximation to the AIXI agent. To develop our approximation, we introduce a Monte Carlo Tree Search algorithm along with an agent-specific extension of the Context Tree Weighting algorithm. Empirically, we present a set of encouraging results on a number of stochastic, unknown, and partially observable domains.
UR - http://www.scopus.com/inward/record.url?scp=77958583913&partnerID=8YFLogxK
M3 - Conference contribution
SN - 9781577354642
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 605
EP - 611
BT - AAAI-10 / IAAI-10 - Proceedings of the 24th AAAI Conference on Artificial Intelligence and the 22nd Innovative Applications of Artificial Intelligence Conference
PB - AI Access Foundation
T2 - 24th AAAI Conference on Artificial Intelligence and the 22nd Innovative Applications of Artificial Intelligence Conference, AAAI-10 / IAAI-10
Y2 - 11 July 2010 through 15 July 2010
ER -