TY - JOUR
T1 - Relating McArthur fire danger indices to remote sensing derived burned area across Australia
AU - shah, sami
AU - Yebra, Marta
AU - Van Dijk, Albert
AU - Cary, Geoffrey
PY - 2022
Y1 - 2022
N2 - The McArthur grassland and forest fire danger indices, widely used in Australia, predict six fire danger classes from ‘Low-Moderate’ to ‘Catastrophic.’ These classes were linked to the rate of fire spread and difficulty of suppression. However, the lack of rate of fire spread data, especially for elevated fire danger classes, has hindered improvement of the McArthur methodology or an alternate approach. We explored the relationship between fire danger classes and burned areas (derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument) within six climate zones during the 2000–2016 Australian fire seasons. A negative binomial linear regression model was used to explore this relationship. The fire danger classes demonstrated a corresponding increase in burned area from ‘Low-Moderate’ to ‘Very High’ classes in Australia’s inland regions. The elevated fire danger classes did not contribute to this trend. In coastal regions, the satellite-derived burned area showed no relationship between fire danger classes and satellite-derived burned area. We used accumulated burned area from the daily MODIS product, which could be subjected to lagged detection as observed in the Kilmore East fire. Thus, the satellite-derived total burned area may not be a suitable metric for informing the McArthur fire danger classes across Australia.
AB - The McArthur grassland and forest fire danger indices, widely used in Australia, predict six fire danger classes from ‘Low-Moderate’ to ‘Catastrophic.’ These classes were linked to the rate of fire spread and difficulty of suppression. However, the lack of rate of fire spread data, especially for elevated fire danger classes, has hindered improvement of the McArthur methodology or an alternate approach. We explored the relationship between fire danger classes and burned areas (derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument) within six climate zones during the 2000–2016 Australian fire seasons. A negative binomial linear regression model was used to explore this relationship. The fire danger classes demonstrated a corresponding increase in burned area from ‘Low-Moderate’ to ‘Very High’ classes in Australia’s inland regions. The elevated fire danger classes did not contribute to this trend. In coastal regions, the satellite-derived burned area showed no relationship between fire danger classes and satellite-derived burned area. We used accumulated burned area from the daily MODIS product, which could be subjected to lagged detection as observed in the Kilmore East fire. Thus, the satellite-derived total burned area may not be a suitable metric for informing the McArthur fire danger classes across Australia.
U2 - 10.1071/WF21108
DO - 10.1071/WF21108
M3 - Article
VL - 32
SP - 133
EP - 148
JO - International Journal of Wildland Fire
JF - International Journal of Wildland Fire
IS - 2
ER -