Resting EEG theta connectivity and alpha power to predict repetitive transcranial magnetic stimulation response in depression: A non-replication from the ICON-DB consortium

Neil W. Bailey*, Noralie Krepel, Hanneke van Dijk, Andrew F. Leuchter, Fidel Vila-Rodriguez, Daniel M. Blumberger, Jonathan Downar, Andrew Wilson, Zafiris J. Daskalakis, Linda L. Carpenter, Juliana Corlier, Martijn Arns, Paul B. Fitzgerald

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

Objective: Our previous research showed high predictive accuracy at differentiating responders from non-responders to repetitive transcranial magnetic stimulation (rTMS) for depression using resting electroencephalography (EEG) and clinical data from baseline and one-week following treatment onset using a machine learning algorithm. In particular, theta (4–8 Hz) connectivity and alpha power (8–13 Hz) significantly differed between responders and non-responders. Independent replication is a necessary step before the application of potential predictors in clinical practice. This study attempted to replicate the results in an independent dataset. Methods: We submitted baseline resting EEG data from an independent sample of participants who underwent rTMS treatment for depression (N = 193, 128 responders) (Krepel et al., 2018) to the same between group comparisons as our previous research (Bailey et al., 2019). Results: Our previous results were not replicated, with no difference between responders and non-responders in theta connectivity (p = 0.250, Cohen's d = 0.1786) nor alpha power (p = 0.357, ηp2 = 0.005). Conclusions: These results suggest that baseline resting EEG theta connectivity or alpha power are unlikely to be generalisable predictors of response to rTMS treatment for depression. Significance: These results highlight the importance of independent replication, data sharing and using large datasets in the prediction of response research.

Original languageEnglish
Pages (from-to)650-659
Number of pages10
JournalClinical Neurophysiology
Volume132
Issue number2
DOIs
Publication statusPublished - Feb 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Resting EEG theta connectivity and alpha power to predict repetitive transcranial magnetic stimulation response in depression: A non-replication from the ICON-DB consortium'. Together they form a unique fingerprint.

Cite this