Abstract
Objective: Our previous research showed high predictive accuracy at differentiating responders from non-responders to repetitive transcranial magnetic stimulation (rTMS) for depression using resting electroencephalography (EEG) and clinical data from baseline and one-week following treatment onset using a machine learning algorithm. In particular, theta (4–8 Hz) connectivity and alpha power (8–13 Hz) significantly differed between responders and non-responders. Independent replication is a necessary step before the application of potential predictors in clinical practice. This study attempted to replicate the results in an independent dataset. Methods: We submitted baseline resting EEG data from an independent sample of participants who underwent rTMS treatment for depression (N = 193, 128 responders) (Krepel et al., 2018) to the same between group comparisons as our previous research (Bailey et al., 2019). Results: Our previous results were not replicated, with no difference between responders and non-responders in theta connectivity (p = 0.250, Cohen's d = 0.1786) nor alpha power (p = 0.357, ηp2 = 0.005). Conclusions: These results suggest that baseline resting EEG theta connectivity or alpha power are unlikely to be generalisable predictors of response to rTMS treatment for depression. Significance: These results highlight the importance of independent replication, data sharing and using large datasets in the prediction of response research.
Original language | English |
---|---|
Pages (from-to) | 650-659 |
Number of pages | 10 |
Journal | Clinical Neurophysiology |
Volume | 132 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2021 |
Externally published | Yes |