TY - JOUR
T1 - Restored river-floodplain connectivity promotes woody plant establishment
AU - Fischer, Sarah
AU - Greet, Joe
AU - Walsh, Christopher J.
AU - Catford, Jane A.
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/8/1
Y1 - 2021/8/1
N2 - Riparian forest ecosystems are declining globally. Many floodplains no longer flood and thus cease to satisfy the hydrologic requirements for riparian tree maintenance and regeneration. To promote woody riparian plant recruitment where flood regimes have been altered by flow regulation, effective approaches to restoration need to be developed. We implemented a landscape-scale experiment in a remnant, temperate floodplain forest. By constructing two weirs within channelized reaches of a stream, we redirected flows into networks of historic distributary channels, which facilitated widespread floodplain inundation. Using a control-reference-impact study design, we assessed the establishment and growth of planted seedlings of three woody species (Eucalyptus camphora, Leptospermum lanigerum and Melaleuca squarrosa) over 13 months in response to flooding achieved by floodplain reconnection. Planted seedlings had higher height and diameter growth rates at both induced (19–29 cm, 1 mm) and naturally flooded (34–44 cm, 3–5 mm) than at non-flooded (4–10 cm, −5 to −3 mm) sites. However, survival rates and temporal growth patterns differed between species according to variation in flood duration and soil moisture, illustrating the different hydrological requirements of the coexisting species. This highlights that variable flooding and drying patterns are essential to create recruitment niches for different riparian plant species and shows the importance of river-floodplain connectivity for providing adequate flooding regimes. Our study demonstrates the suitability of two complementary restoration approaches – restoring hydrology and active revegetation – for promoting the regeneration of riparian forests.
AB - Riparian forest ecosystems are declining globally. Many floodplains no longer flood and thus cease to satisfy the hydrologic requirements for riparian tree maintenance and regeneration. To promote woody riparian plant recruitment where flood regimes have been altered by flow regulation, effective approaches to restoration need to be developed. We implemented a landscape-scale experiment in a remnant, temperate floodplain forest. By constructing two weirs within channelized reaches of a stream, we redirected flows into networks of historic distributary channels, which facilitated widespread floodplain inundation. Using a control-reference-impact study design, we assessed the establishment and growth of planted seedlings of three woody species (Eucalyptus camphora, Leptospermum lanigerum and Melaleuca squarrosa) over 13 months in response to flooding achieved by floodplain reconnection. Planted seedlings had higher height and diameter growth rates at both induced (19–29 cm, 1 mm) and naturally flooded (34–44 cm, 3–5 mm) than at non-flooded (4–10 cm, −5 to −3 mm) sites. However, survival rates and temporal growth patterns differed between species according to variation in flood duration and soil moisture, illustrating the different hydrological requirements of the coexisting species. This highlights that variable flooding and drying patterns are essential to create recruitment niches for different riparian plant species and shows the importance of river-floodplain connectivity for providing adequate flooding regimes. Our study demonstrates the suitability of two complementary restoration approaches – restoring hydrology and active revegetation – for promoting the regeneration of riparian forests.
KW - Flooding regime
KW - Forest restoration
KW - Hydrological niche
KW - Revegetation
KW - Soil moisture
UR - http://www.scopus.com/inward/record.url?scp=85105690464&partnerID=8YFLogxK
U2 - 10.1016/j.foreco.2021.119264
DO - 10.1016/j.foreco.2021.119264
M3 - Article
AN - SCOPUS:85105690464
SN - 0378-1127
VL - 493
JO - Forest Ecology and Management
JF - Forest Ecology and Management
M1 - 119264
ER -