TY - JOUR
T1 - Reticulate evolution and the origins of ribosomal internal transcribed spacer diversity in apomictic Meloidogyne
AU - Hugall, Andrew
AU - Stanton, Julie
AU - Moritz, Craig
PY - 1999/2
Y1 - 1999/2
N2 - Among root knot nematodes of the genus Meloidogyne, the polyploid obligate mitotic parthenogens M. arenaria, M. javanica, and M. incognita are widespread and common agricultural pests. Although these named forms are distinguishable by closely related mitochondrial DNA (mtDNA) haplotypes, detailed sequence analyses of internal transcribed spacers (ITSs) of nuclear ribosomal genes reveal extremely high diversity, even within individual nematodes. This ITS diversity is broadly structured into two very different groups that are 12%-18% divergent: one with low diversity (<1.0%) and one with high diversity (6%-7%). In both of these groups, identical sequences can be found within individual nematodes of different mtDNA haplotypes (i.e., among species). Analysis of genetic variance indicates that more than 90% of ITS diversity can be found within an individual nematode, with small but statistically significant (5%-10%; P < 0.05) variance distributed among mtDNA lineages. The evolutionarily distinct parthenogen M. hapla shows a similar pattern of ITS diversity, with two divergent groups of ITSs within each individual. In contrast, two diploid amphimictic species have only one lineage of ITSs with low diversity (<0.2%). The presence of divergent lineages of rDNA in the apomictic taxa is unlikely to be due to differences among pseudogenes. Instead, we suggest that the diversity of ITSs in M. arenaria, M. javanica, and M. incognita is due to hybrid origins from closely related females (as inferred from mtDNA) and combinations of more diverse paternal lineages.
AB - Among root knot nematodes of the genus Meloidogyne, the polyploid obligate mitotic parthenogens M. arenaria, M. javanica, and M. incognita are widespread and common agricultural pests. Although these named forms are distinguishable by closely related mitochondrial DNA (mtDNA) haplotypes, detailed sequence analyses of internal transcribed spacers (ITSs) of nuclear ribosomal genes reveal extremely high diversity, even within individual nematodes. This ITS diversity is broadly structured into two very different groups that are 12%-18% divergent: one with low diversity (<1.0%) and one with high diversity (6%-7%). In both of these groups, identical sequences can be found within individual nematodes of different mtDNA haplotypes (i.e., among species). Analysis of genetic variance indicates that more than 90% of ITS diversity can be found within an individual nematode, with small but statistically significant (5%-10%; P < 0.05) variance distributed among mtDNA lineages. The evolutionarily distinct parthenogen M. hapla shows a similar pattern of ITS diversity, with two divergent groups of ITSs within each individual. In contrast, two diploid amphimictic species have only one lineage of ITSs with low diversity (<0.2%). The presence of divergent lineages of rDNA in the apomictic taxa is unlikely to be due to differences among pseudogenes. Instead, we suggest that the diversity of ITSs in M. arenaria, M. javanica, and M. incognita is due to hybrid origins from closely related females (as inferred from mtDNA) and combinations of more diverse paternal lineages.
KW - Concerted evolution
KW - Hybrid
KW - Parthenogenesis
KW - Polyploid
UR - http://www.scopus.com/inward/record.url?scp=0033002454&partnerID=8YFLogxK
U2 - 10.1093/oxfordjournals.molbev.a026098
DO - 10.1093/oxfordjournals.molbev.a026098
M3 - Article
SN - 0737-4038
VL - 16
SP - 157
EP - 164
JO - Molecular Biology and Evolution
JF - Molecular Biology and Evolution
IS - 2
ER -