TY - JOUR
T1 - Reviewing the circulation and mixing of Antarctic Intermediate Water in the South Pacific using evidence from geochemical tracers and Argo float trajectories
AU - Bostock, Helen C.
AU - Sutton, Phil J.
AU - Williams, Michael J.M.
AU - Opdyke, Bradley N.
PY - 2013/3
Y1 - 2013/3
N2 - Evidence from physical and geochemical tracers measured during the World Ocean Circulation Experiment (WOCE) shows that there are four sub-types of Antarctic Intermediate Water (AAIW) in the South Pacific. The main formation region of AAIW is the southeast Pacific, where fresh, cold, high oxygen, low nutrient, intermediate waters are created. This AAIW is transported north and mixes with Equatorial Pacific Intermediate Waters (EqPIW), themselves a combination of AAIW and nutrient rich, old North Pacific deep waters. 'Tasman' AAIW found in the Coral and Tasman Seas is more saline and warmer than the main subtropical gyre, and appears to have formed from mixing of AAIW with thermocline waters in the Tasman Gyre. Tasman AAIW leaks out of the Tasman basin to the north of New Zealand and along Chatham Rise, and also in the South Tasman Sea via the Tasman Leakage. Another source of relatively fresh, high oxygen, low nutrient, young AAIW comes directly from the Southern Ocean, flowing into the southwest and central South Pacific Basin, west of the East Pacific Rise. This 'Southern Ocean' (SO) AAIW is most likely a mixture of AAIW formed locally at the Subantarctic Front (SAF), and AAIW formed along the SAF in the southeast Pacific or Indian oceans and transported by the Antarctic Circumpolar Current (ACC). Interpreting physical and geochemical tracers, combined with velocity estimates from Argo floats, and previous research, has allowed us to refine the detailed circulation pattern of AAIW in the South Pacific, especially in the topographically complex southwest Pacific.
AB - Evidence from physical and geochemical tracers measured during the World Ocean Circulation Experiment (WOCE) shows that there are four sub-types of Antarctic Intermediate Water (AAIW) in the South Pacific. The main formation region of AAIW is the southeast Pacific, where fresh, cold, high oxygen, low nutrient, intermediate waters are created. This AAIW is transported north and mixes with Equatorial Pacific Intermediate Waters (EqPIW), themselves a combination of AAIW and nutrient rich, old North Pacific deep waters. 'Tasman' AAIW found in the Coral and Tasman Seas is more saline and warmer than the main subtropical gyre, and appears to have formed from mixing of AAIW with thermocline waters in the Tasman Gyre. Tasman AAIW leaks out of the Tasman basin to the north of New Zealand and along Chatham Rise, and also in the South Tasman Sea via the Tasman Leakage. Another source of relatively fresh, high oxygen, low nutrient, young AAIW comes directly from the Southern Ocean, flowing into the southwest and central South Pacific Basin, west of the East Pacific Rise. This 'Southern Ocean' (SO) AAIW is most likely a mixture of AAIW formed locally at the Subantarctic Front (SAF), and AAIW formed along the SAF in the southeast Pacific or Indian oceans and transported by the Antarctic Circumpolar Current (ACC). Interpreting physical and geochemical tracers, combined with velocity estimates from Argo floats, and previous research, has allowed us to refine the detailed circulation pattern of AAIW in the South Pacific, especially in the topographically complex southwest Pacific.
KW - Antarctic Intermediate Waters
KW - Argo
KW - Circulation
KW - Geochemistry
KW - South Pacific
KW - World Ocean Circulation Experiment (WOCE)
UR - http://www.scopus.com/inward/record.url?scp=84872109073&partnerID=8YFLogxK
U2 - 10.1016/j.dsr.2012.11.007
DO - 10.1016/j.dsr.2012.11.007
M3 - Article
SN - 0967-0637
VL - 73
SP - 84
EP - 98
JO - Deep-Sea Research Part I: Oceanographic Research Papers
JF - Deep-Sea Research Part I: Oceanographic Research Papers
ER -