Robot task planning and explanation in open and uncertain worlds

Marc Hanheide*, Moritz Göbelbecker, Graham S. Horn, Andrzej Pronobis, Kristoffer Sjöö, Alper Aydemir, Patric Jensfelt, Charles Gretton, Richard Dearden, Miroslav Janicek, Hendrik Zender, Geert Jan Kruijff, Nick Hawes, Jeremy L. Wyatt

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    107 Citations (Scopus)

    Abstract

    A long-standing goal of AI is to enable robots to plan in the face of uncertain and incomplete information, and to handle task failure intelligently. This paper shows how to achieve this. There are two central ideas. The first idea is to organize the robot's knowledge into three layers: instance knowledge at the bottom, commonsense knowledge above that, and diagnostic knowledge on top. Knowledge in a layer above can be used to modify knowledge in the layer(s) below. The second idea is that the robot should represent not just how its actions change the world, but also what it knows or believes. There are two types of knowledge effects the robot's actions can have: epistemic effects (I believe X because I saw it) and assumptions (I'll assume X to be true). By combining the knowledge layers with the models of knowledge effects, we can simultaneously solve several problems in robotics: (i) task planning and execution under uncertainty; (ii) task planning and execution in open worlds; (iii) explaining task failure; (iv) verifying those explanations. The paper describes how the ideas are implemented in a three-layer architecture on a mobile robot platform. The robot implementation was evaluated in five different experiments on object search, mapping, and room categorization.

    Original languageEnglish
    Pages (from-to)119-150
    Number of pages32
    JournalArtificial Intelligence
    Volume247
    DOIs
    Publication statusPublished - 1 Jun 2017

    Fingerprint

    Dive into the research topics of 'Robot task planning and explanation in open and uncertain worlds'. Together they form a unique fingerprint.

    Cite this