Robust Lasso Regression Using Tukey's Biweight Criterion

Le Chang*, Steven Roberts, Alan Welsh

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    52 Citations (Scopus)

    Abstract

    The adaptive lasso is a method for performing simultaneous parameter estimation and variable selection. The adaptive weights used in its penalty term mean that the adaptive lasso achieves the oracle property. In this work, we propose an extension of the adaptive lasso named the Tukey-lasso. By using Tukey's biweight criterion, instead of squared loss, the Tukey-lasso is resistant to outliers in both the response and covariates. Importantly, we demonstrate that the Tukey-lasso also enjoys the oracle property. A fast accelerated proximal gradient (APG) algorithm is proposed and implemented for computing the Tukey-lasso. Our extensive simulations show that the Tukey-lasso, implemented with the APG algorithm, achieves very reliable results, including for high-dimensional data where p > n. In the presence of outliers, the Tukey-lasso is shown to offer substantial improvements in performance compared to the adaptive lasso and other robust implementations of the lasso. Real-data examples further demonstrate the utility of the Tukey-lasso. Supplementary materials for this article are available online.

    Original languageEnglish
    Pages (from-to)36-47
    Number of pages12
    JournalTechnometrics
    Volume60
    Issue number1
    DOIs
    Publication statusPublished - 2 Jan 2018

    Fingerprint

    Dive into the research topics of 'Robust Lasso Regression Using Tukey's Biweight Criterion'. Together they form a unique fingerprint.

    Cite this