Robust orthonormal subspace learning: Efficient recovery of corrupted low-rank matrices

Xianbiao Shu*, Fatih Porikli, Narendra Ahuja

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    83 Citations (Scopus)

    Abstract

    Low-rank matrix recovery from a corrupted observation has many applications in computer vision. Conventional methods address this problem by iterating between nuclear norm minimization and sparsity minimization. However, iterative nuclear norm minimization is computationally prohibitive for large-scale data (e.g., video) analysis. In this paper, we propose a Robust Orthogonal Subspace Learning (ROSL) method to achieve efficient low-rank recovery. Our intuition is a novel rank measure on the low-rank matrix that imposes the group sparsity of its coefficients under orthonormal subspace. We present an efficient sparse coding algorithm to minimize this rank measure and recover the low-rank matrix at quadratic complexity of the matrix size. We give theoretical proof to validate that this rank measure is lower bounded by nuclear norm and it has the same global minimum as the latter. To further accelerate ROSL to linear complexity, we also describe a faster version (ROSL+) empowered by random sampling. Our extensive experiments demonstrate that both ROSL and ROSL+ provide superior efficiency against the state-of-the-art methods at the same level of recovery accuracy.

    Original languageEnglish
    Title of host publicationProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    PublisherIEEE Computer Society
    Pages3874-3881
    Number of pages8
    ISBN (Electronic)9781479951178, 9781479951178
    DOIs
    Publication statusPublished - 24 Sept 2014
    Event27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014 - Columbus, United States
    Duration: 23 Jun 201428 Jun 2014

    Publication series

    NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    ISSN (Print)1063-6919

    Conference

    Conference27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014
    Country/TerritoryUnited States
    CityColumbus
    Period23/06/1428/06/14

    Fingerprint

    Dive into the research topics of 'Robust orthonormal subspace learning: Efficient recovery of corrupted low-rank matrices'. Together they form a unique fingerprint.

    Cite this