Abstract
Stochastic Shortest Path problems (SSPs), a subclass of Markov Decision Problems (MDPs), can be efficiently dealt with using Real-Time Dynamic Programming (RTDP). Yet, MDP models are often uncertain (obtained through statistics or guessing). The usual approach is robust planning: searching for the best policy under the worst model. This paper shows how RTDP can be made robust in the common case where transition probabilities are known to lie in a given interval.
Original language | English |
---|---|
Pages (from-to) | 1214-1219 |
Number of pages | 6 |
Journal | IJCAI International Joint Conference on Artificial Intelligence |
Publication status | Published - 2005 |
Event | 19th International Joint Conference on Artificial Intelligence, IJCAI 2005 - Edinburgh, United Kingdom Duration: 30 Jul 2005 → 5 Aug 2005 |