Abstract
The Hirota equation is a modified nonlinear Schrödinger equation (NLSE) that takes into account higher-order dispersion and time-delay corrections to the cubic nonlinearity. In describing wave propagation in the ocean and optical fibers, it can be viewed as an approximation which is more accurate than the NLSE. We have modified the Darboux transformation technique to show how to construct the hierarchy of rational solutions of the Hirota equation. We present explicit forms for the two lower-order solutions. Each one is a regular (nonsingular) rational solution with a single maximum that can describe a rogue wave in this model. Numerical simulations reveal the appearance of these solutions in a chaotic field generated from a perturbed continuous wave solution.
Original language | English |
---|---|
Article number | 046602 |
Journal | Physical Review E |
Volume | 81 |
Issue number | 4 |
DOIs | |
Publication status | Published - 15 Apr 2010 |