TY - JOUR
T1 - Role of T-type channels in vasomotor function
T2 - Team player or chameleon?
AU - Kuo, Ivana Y.T.
AU - Howitt, Lauren
AU - Sandow, Shaun L.
AU - McFarlane, Alexandra
AU - Hansen, Pernille B.
AU - Hill, Caryl E.
PY - 2014/4
Y1 - 2014/4
N2 - Low-voltage-activated T-type calcium channels play an important role in regulating cellular excitability and are implicated in conditions, such as epilepsy and neuropathic pain. T-type channels, especially Cav3.1 and Cav3.2, are also expressed in the vasculature, although patch clamp studies of isolated vascular smooth muscle cells have in general failed to demonstrate these low-voltage-activated calcium currents. By contrast, the channels which are blocked by T-type channel antagonists are high-voltage activated but distinguishable from their L-type counterparts by their T-type biophysical properties and small negative shifts in activation and inactivation voltages. These changes in T-channel properties may result from vascular-specific expression of splice variants of Cav3 genes, particularly in exon 25/26 of the III-IV linker region. Recent physiological studies suggest that T-type channels make a small contribution to vascular tone at low intraluminal pressures, although the relevance of this contribution is unclear. By contrast, these channels play a larger role in vascular tone of small arterioles, which would be expected to function at lower intra-vascular pressures. Upregulation of T-type channel function following decrease in nitric oxide bioavailability and increase in oxidative stress, which occurs during cardiovascular disease, suggests that a more important role could be played by these channels in pathophysiological situations. The ability of T-type channels to be rapidly recruited to the plasma membrane, coupled with their subtype-specific localisation in signalling microdomains where they could modulate the function of calcium-dependent ion channels and pathways, provides a mechanism for rapid up- and downregulation of vasoconstriction. Future investigation into the molecules which govern these changes may illuminate novel targets for the treatment of conditions such as therapy-resistant hypertension and vasospasm.
AB - Low-voltage-activated T-type calcium channels play an important role in regulating cellular excitability and are implicated in conditions, such as epilepsy and neuropathic pain. T-type channels, especially Cav3.1 and Cav3.2, are also expressed in the vasculature, although patch clamp studies of isolated vascular smooth muscle cells have in general failed to demonstrate these low-voltage-activated calcium currents. By contrast, the channels which are blocked by T-type channel antagonists are high-voltage activated but distinguishable from their L-type counterparts by their T-type biophysical properties and small negative shifts in activation and inactivation voltages. These changes in T-channel properties may result from vascular-specific expression of splice variants of Cav3 genes, particularly in exon 25/26 of the III-IV linker region. Recent physiological studies suggest that T-type channels make a small contribution to vascular tone at low intraluminal pressures, although the relevance of this contribution is unclear. By contrast, these channels play a larger role in vascular tone of small arterioles, which would be expected to function at lower intra-vascular pressures. Upregulation of T-type channel function following decrease in nitric oxide bioavailability and increase in oxidative stress, which occurs during cardiovascular disease, suggests that a more important role could be played by these channels in pathophysiological situations. The ability of T-type channels to be rapidly recruited to the plasma membrane, coupled with their subtype-specific localisation in signalling microdomains where they could modulate the function of calcium-dependent ion channels and pathways, provides a mechanism for rapid up- and downregulation of vasoconstriction. Future investigation into the molecules which govern these changes may illuminate novel targets for the treatment of conditions such as therapy-resistant hypertension and vasospasm.
KW - Endothelial dysfunction
KW - L-type
KW - T-type
KW - Trafficking
KW - Voltage-dependent calcium channels
UR - http://www.scopus.com/inward/record.url?scp=84896548595&partnerID=8YFLogxK
U2 - 10.1007/s00424-013-1430-x
DO - 10.1007/s00424-013-1430-x
M3 - Review article
SN - 0031-6768
VL - 466
SP - 767
EP - 779
JO - Pflugers Archiv European Journal of Physiology
JF - Pflugers Archiv European Journal of Physiology
IS - 4
ER -