Rolling Shutter Camera Relative Pose: Generalized Epipolar Geometry

Yuchao Dai, Hongdong Li, Laurent Kneip

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    56 Citations (Scopus)

    Abstract

    The vast majority of modern consumer-grade cameras employ a rolling shutter mechanism. In dynamic geometric computer vision applications such as visual SLAM, the so-called rolling shutter effect therefore needs to be properly taken into account. A dedicated relative pose solver appears to be the first problem to solve, as it is of eminent importance to bootstrap any derivation of multi-view geometry. However, despite its significance, it has received inadequate attention to date. This paper presents a detailed investigation of the geometry of the rolling shutter relative pose problem. We introduce the rolling shutter essential matrix, and establish its link to existing models such as the push-broom cameras, summarized in a clean hierarchy of multi-perspective cameras. The generalization of well-established concepts from epipolar geometry is completed by a definition of the Sampson distance in the rolling shutter case. The work is concluded with a careful investigation of the introduced epipolar geometry for rolling shutter cameras on several dedicated benchmarks.

    Original languageEnglish
    Title of host publicationProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
    PublisherIEEE Computer Society
    Pages4132-4140
    Number of pages9
    ISBN (Electronic)9781467388504
    DOIs
    Publication statusPublished - 9 Dec 2016
    Event29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 - Las Vegas, United States
    Duration: 26 Jun 20161 Jul 2016

    Publication series

    NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    Volume2016-December
    ISSN (Print)1063-6919

    Conference

    Conference29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
    Country/TerritoryUnited States
    CityLas Vegas
    Period26/06/161/07/16

    Fingerprint

    Dive into the research topics of 'Rolling Shutter Camera Relative Pose: Generalized Epipolar Geometry'. Together they form a unique fingerprint.

    Cite this