Room temperature magnetic field learning with optically readout single NV-centers

Antonio A. Gentile, Raffaele Santagati, Sebastian Knauer, Simon Schmitt, Stefano Paesani, Chris Granade, Nathan Wiebe, Christian Osterkamp, Liam P. McGuinness, Jianwei Wang, Mark G. Thompson, John G. Rarity, Fedor Jelezko, Anthony Laing

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We propose and test a Magnetic Field Learning (MFL) protocol for high-resolution, high dynamic range and high-sensitivity magnetometry with a single NV-center electron spin. Our approach leverages recent proposals that analyze the benefits of adopting classical machine learning to post-process quantum data in quantum sensing protocols [1]. MFL was tested at room-temperature using a setup detecting state-dependent fluorescence via confocal microscopy, and a microwave controlled NV defect in bulk diamond as a sensor [2]. This setup senses the intensity of a magnetic field B in the proximity of the quantum sensor via Ramsey interferometry [3]. In our protocol, the Ramsey precession time τ is adaptively chosen at each step via an efficient particle guess heuristic [1].

Original languageEnglish
Title of host publication2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728104690
DOIs
Publication statusPublished - Jun 2019
Externally publishedYes
Event2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 - Munich, Germany
Duration: 23 Jun 201927 Jun 2019

Publication series

Name2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019

Conference

Conference2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
Country/TerritoryGermany
CityMunich
Period23/06/1927/06/19

Fingerprint

Dive into the research topics of 'Room temperature magnetic field learning with optically readout single NV-centers'. Together they form a unique fingerprint.

Cite this