Abstract
Methanol, which contains 12.6 weight percent hydrogen, is a good hydrogen storage medium because it is a liquid at room temperature. However, by releasing the hydrogen, undesirable CO and/or CO2 byproducts are formed during catalytic fuel reforming. We show that alkaline earth metal oxides, in our case MgO nanocrystals, exhibit stable photocatalytic activity for CO/CO2-free H2 production from liquid methanol at room temperature. The performance of MgO nanocrystals toward methanol dehydrogenation increases with time and approaches ~320 mmol g−1 hour−1 after a 2-day photocatalytic reaction. The COx-free H2 production is attributed to methanol photodecomposition to formaldehyde, photocatalyzed by surface electronic states of unique monodispersed, porous MgO nanocrystals, which were synthesized with a novel facile colloidal chemical strategy. An oxygen plasma treatment allows for the removal of organic surfactants, producing MgO nanocrystals that are well dispersible in methanol.
Original language | English |
---|---|
Article number | e1501425 |
Journal | Science advances |
Volume | 2 |
Issue number | 9 |
DOIs | |
Publication status | Published - Sept 2016 |
Externally published | Yes |